jump to navigation

STS-59, Endeavour, Space Radar Lab 1 — April 9-20, 1994 April 9, 2013

Posted by skywalking1 in History, Space.
1 comment so far

 

Twenty years ago, our STS-59 crew completed the Terminal Countdown Demonstration Test in preparation for our April 9 launch. At pad 39A, with Endeavour, are Rich Clifford, Kevin Chilton, Sid Gutierrez, Linda Godwin, Tom Jones (the sole rookie), and Jay Apt. Boy, was I excited: just over two weeks til launch!

Twenty years ago, our STS-59 crew completed the Terminal Countdown Demonstration Test in preparation for our April 9 launch. At pad 39A, with Endeavour, are Rich Clifford, Kevin Chilton, Sid Gutierrez, Linda Godwin, Tom Jones (the sole rookie), and Jay Apt. Boy, was I excited: just over two weeks til launch! (NASA KSC-94PC-468)

Tom Jones with Endeavou'rs SRB and ET stack on Launch Pad 39A. The orbiter is enclosed by the gray protective structure. (NASA ksc-394c-1160.22)

Tom Jones with Endeavour’s SRB and ET stack on Launch Pad 39A. The orbiter is enclosed by the gray protective structure. (NASA ksc-394c-1160.22)

Our STS-59 crew during our countdown rehearsal on 3/23/94. Here we gather outside Endeavour's hatch in the Pad 39A White Room. Left to right are Rich Clifford, Jay Apt, Linda Godwin, Tom Jones, Kevin Chilton, and Sid Gutierrez. (NASA KSC-394C-1160.09)

Our STS-59 crew during our countdown rehearsal on 3/23/94. Here we gather outside Endeavour’s hatch in the Pad 39A White Room. Left to right are Rich Clifford, Jay Apt, Linda Godwin, Tom Jones, Kevin Chilton, and Sid Gutierrez. (NASA KSC-394C-1160.09)

On Endeavour's middeck, Linda Godwin (right) and I wait out the Terminal Countdown Demonstration Test (TCDT). I caught a brief nap during the 3-hour mock countdown. (NASA photo by Andy Thomas).

On Endeavour’s middeck, Linda Godwin (right) and I wait out the Terminal Countdown Demonstration Test (TCDT) on 3/24/94. I caught a brief nap during the 3-hour mock countdown. (NASA photo by Andy Thomas).

Endeavour rises toward its 57-deg inclination orbit at sunrise on April 9, 1994. (NASA)

Endeavour rises toward its 57-deg inclination orbit at sunrise on April 9, 1994. (NASA)

I’ve written about the Space Radar Lab 1 mission, STS-59, in my book, “Sky Walking: An Astronaut’s Memoir.” But here I’ll add some details not included in the book, and some of the many hundreds of photos our crew returned to preserve our memories of these superb 11 days in space. I’ll add thoughts and photos during the coming eleven days, with the idea that the post can become an archive for the STS-59 crew and team.

As soon as we entered quarantine in late March in Houston, shuttle managers postponed the April 7 launch a day for engine turbopump inspections. Then our first launch attempt on April 8 was postponed because of high winds at Kennedy Space Center, violating the runway crosswind limits for the orbiter in case of an emergency return to the Cape. Our crew sat strapped in on the pad for about five hours as we waited for the winds to abate, but they never did. The parachute pack and its emergency oxygen bottles become extremely annoying after five hours strapped in the seat. The scrub under clear blue skies was a disappointment, but we were coming back the next day.

This was my first space shuttle launch, and it lived up to my expectations in every day. Jolts, rumbles, screaming slipstream penetrating the cabin walls, 2.5 g’s during first stage–I could barely register all the physical and emotional sensations during the 8.5 minutes of ascent. I was gratified to have Linda Godwin seated to my left on the middeck — a veteran and friend I could turn to for reassurance during this vibration-filled ride to orbit. We were smiling the whole time, but behind the smile is a lot of prayer. After a full minute at 3 g’s, with the Mach meter at 25, I thanked God when we arrived in orbit–Main Engine Cut-Off–and weightlessness.

SRB sep STS-59 STS059-16ET-1577

The 16mm movie camera in Endeavour’s left ET umbilical well caught the left-side SRB separating at about 2 minutes into our ascent, ~ Mach 4. You can see the forward booster separation motors still firing. (NASA STS059-16ET-1577)

Sid, Jay, Rich, Kevin, Linda, and I were about to experience an incredibly rewarding Mission to Planet Earth.

Just out of my suit on the middeck of Endeavour, helping other crewmembers get unsuited and into "orbit" clothes. 4/9/94 (NASA)

Just out of my suit on the middeck of Endeavour, helping other crewmembers get unsuited and into “orbit” clothes. 4/9/94 (NASA)

The Space Radar Lab 1 payload in Endeavour's cargo bay. Three cutting-edge radar instruments, a CO pollution monitor, and a terrific view of the Aurora Australis. (NASA)

The Space Radar Lab 1 payload in Endeavour’s cargo bay. Three cutting-edge radar instruments, a CO pollution monitor, and a terrific view of the Aurora Australis. (NASA)

Our job on SRL-1, STS-59, was to act as the space component of the Space Radar Lab science team, deployed all over the world. We commanded the orbiter to point at our 400+ science targets, monitored the maneuver execution “flown” by Endeavour’s computers after our data entries, changed high rate recorder data tapes, and took voluminous science photography to provide “ground truth” about environmental conditions that might affect the radar return from the science targets. Our crew split into two shifts, Red and Blue, to run SRL around the clock. Linda Godwin led the activation on flight day 1. The Blue Shift woke up about 10 hours into the flight and took over for our first full science shift — Jay, Rich, and me. Linda, Sid, and Kevin went promptly to bed after a very long day. We soon settled into our 12-hour shift routines and explored the world for another ten days.

Rich Clifford inserts a data storage cassette into one of our 3 high rate recorders. Each tape cassette held 50 Gb of data. We carried more than 100 onboard, with a tape change about every 30 mins for 11 days. (NASA STS059-09-12)

Rich Clifford inserts a data storage cassette into one of our 3 high rate recorders. Each tape cassette held 50 Gb of data. We carried more than 100 onboard, with a tape change about every 30 mins for 11 days. (NASA STS059-09-12)

STS-59 crew: (L to R) Linda Godwin, Kevin Chilton, Tom Jones, Jay Apt, Sid Gutierrez, Rich Clifford. (NASA)

STS-59 crew: (L to R) Linda Godwin, Kevin Chilton, Tom Jones, Jay Apt, Sid Gutierrez, Rich Clifford. (NASA)

Our crew had 14 different cameras aboard to document our science targets. A big Linhof shot a 4×5-inch negative, using box magazines which we reloaded in a light-tight bag every night. We had four Hasselblads with 70mm film, each armed with a different lens for science photography (40mm, 100mm, 250mm, and an infrared filter atop a 250mm lens). We used Nikons for in-cabin photography using 35mm film. And we used payload bay video cameras to record the swath being seen by the radar with each data take. Here’s a shot of one of our “Decade Volcano” targets, the Philippines’ Mt. Pinatubo.

Mt. Pinatubo in the Philippines, which erupted in 1991, sends ash flows surging downslope under seasonal rains. Note the emerald green crater lake at the summit. (NASA STS059-L14-170)

Mt. Pinatubo in the Philippines, which erupted in 1991, sends ash flows surging downslope under seasonal rains. Note the emerald green crater lake at the summit. (NASA STS059-L14-170)

Kevin Chilton and Linda Godwin shoot science targets on the Red Shift aboard Endeavour. (NASA sts059-13-030)

Kevin Chilton and Linda Godwin shoot science targets on the Red Shift aboard Endeavour. (NASA sts059-13-030)

 

Frozen, volcanic Onekotan Island, Russia, in the Kuriles south of Kamchatka. April 14, 1994. (NASA STS059-219-065)

Frozen, volcanic Onekotan Island, Russia, in the Kuriles south of Kamchatka. April 14, 1994. (NASA STS059-219-065)

Tom Jones reloads Linhoff magazines, a daily challenge, on Endeavour's middeck. (NASA sts059-8-23)

Tom Jones reloads Linhoff magazines, a daily challenge, on Endeavour’s middeck. (NASA sts059-8-23)

Each work shift on the aft flight deck was run on the clock: a constant stream of orbiter maneuvers, recorder tape changes, and intense video and still photo sessions focused on the science targets below (or above, from our point of view on the flight deck). We took turns entering the maneuvers on the flight plan into Endeavour’s computers, changing and managing the 50 Gb tape cassettes, and spotting and documenting science targets with our cameras. After each target we typed entries into a laptop documenting the weather, dust, and precipitation conditions over the science site. Night passes were a bit calmer, because the photography requirements went away for the most part. We also called down fires and other environmental phenomena of interest to the Measurement of Air Pollution from Satellites team. In between, we grabbed snacks and established comm with HAM radio operators around the globe. One generous HAM arranged to patch me through on a phone call to Liz, back in Houston. We spoke clearly across the miles; me over Hawaii, Liz with the kids back in Houston, until Endeavour carried me over the horizon. Priceless.

Linda Godwin, Kevin Chilton (left) and Sid Gutierrez have breakfast and read flight plan changes on Endeavour's middeck. Work shifts were 12 hours, with 8 hours for sleep. The balance was spent on exercise, meals, and housekeeping. (NASA STS059-05-07)

Linda Godwin, Kevin Chilton (left) and Sid Gutierrez have breakfast and read flight plan changes on Endeavour’s middeck. Work shifts were 12 hours, with 8 hours for sleep. The balance was spent on exercise, meals, and housekeeping. (NASA STS059-05-07)

One of Jay Apt’s best photos of the Aurora Australis from STS-59. The radar antennae are to the left, the Canadarm I robot arm on the right. (NASA)

One of my favorite lunch items -- irradiated grilled chicken breast, mustard, 2 warm tortillas = chicken flying saucer sandwich (TM). (NASA STS059-19-020)

One of my favorite lunch items — irradiated grilled chicken breast, mustard, 2 warm tortillas = chicken flying saucer sandwich (TM). (NASA STS059-19-020)

From Endeavour’s commander, USAF Col. (ret.) Sid Gutierrez:
Great! My best memories are of the crew and the Southern Aurora. It was a great group of folks to work with both on the ground and in Space. I remember the comment Linda made during an interview that generated that strange response from the ground. I would like to forget about the air in the water and everything that went with that. Chili falling asleep on the middeck while sending Emails late at night. Jay maneuvering the vehicle under Chili’s watchful eye. Rich and I waiting for anyone to get sick so we could actually give a real shot. I remember your enthusiasm at seeing all of it the first time and your incessant comments into the tape recorder so you could piece all this together later. And I remember the incredible feeling as we blacked out the lights and floated through the Sothern Aurora – like passing thorough something that was alive. But most of all I remember being able to eat a juicy hamburger with tomato and lettuce after we landed and then heading home to wives, husband and all the kids. Great memories! (April 12, 2013)

Endeavour commander Sid Gutierrez on the flight deck during with one of our Hasselblads. Earth is the unbeatable backdrop. (NASA sts059-19-004)

Endeavour commander Sid Gutierrez on the flight deck during with one of our Hasselblads. Earth is the unbeatable backdrop. (NASA sts059-19-004)

The varied science targets across the globe required all of us to learn many aspects of Earth system science: geology, volcanology, forestry, ecology, hydrology, oceanography, agriculture, pollution monitoring, desertification, and radar remote sensing theory, among others. One of my favorite “others” was archaeology, where our team used the SIR-C and X-SAR radars to probe dry sands and soils and reveal traces of ancient cultures beneath. The experiment mapped extensive “radar river” drainages beneath the Saharan sands, traced the Silk Road along the margin of the Takla Makhan desert, and zeroed in on caravan routes to the lost trading city of Ubar on the Arabian peninsula. Aboard Endeavour we carried a 200,000-year-old hand axe, recovered by USGS colleague Jerry Schaber in the 1980s from the banks of one of the Egyptian radar rivers. There aboard the most sophisticated technological tool of the late 20th century, we contemplated a floating example of the “high tech” used by Homo Erectus back when the Sahara was a grassy savannah, teeming with game. What technology will we possess in another 200 millennia? Will the space shuttle even be remembered? I, for one, can never forget it!

South coast of the Alaska Peninsula, where the C-shaped island's arms enclose Sosbee Bay, in sunglint. (NASA STS059-214-001)

South coast of the Alaska Peninsula, with the C-shaped island enclosing Sosbee Bay, in sunglint. (NASA STS059-214-001)

Just out of frame on the left of this Alaska coastline is Veniaminoff volcano, one of the many active peaks on the peninsula. Here we see ocean currents and eddies made visible by the reflected sunlight, corroboration of ocean surface features observed by the radar lab. What a visual treat as well.

Our view from 120 miles up as we soar over Gibraltar, Spain, and Morocco. Snow caps the Atlas and Sierra Nevada ranges in Africa and Europe. (NASA sts059-238-074)

Our view from 120 miles up as we soar over Gibraltar, Spain, and Morocco. Snow caps the Atlas and Sierra Nevada ranges in Africa and Europe. (NASA sts059-238-074)

An early human hurled this axe at his prey along the banks of a stream in southern Egypt, perhaps 200,000 years ago. The USGS lent us this tool as we used our Radar Lab to map possible habitats of these ancient people, now hidden by the sands of the arid Sahara. (NASA sts-059-42-18)

An early human hurled this axe at his prey along the banks of a stream in southern Egypt, perhaps 200,000 years ago. The USGS lent us this tool as we used our Radar Lab to map possible habitats of these ancient people, now hidden by the sands of the arid Sahara. (NASA sts-059-42-18)

The Blue Shift -- Jay, Rich, and Tom -- enjoy a meal after a shift on the flight deck. We generally had about 2.5 hours after finishing work to eat, clean up, and take care of middeck chores before hitting the sleep stations. (NASA sts059-14-06)

The Blue Shift — Jay, Rich, and Tom — enjoys a meal after a shift on the flight deck. We generally had about 2.5 hours after finishing work to eat, clean up, and take care of middeck chores before hitting the sleep stations. (NASA sts059-14-06)

Our early spring view of the Alaskan coastal ranges, fronting the Inside Passage, was glorious. Our radar imaged glaciers around the world, like these near Mt. St. Elias, to help estimate their velocity downhill. STS059-228-94

Our early spring view of the Alaskan coastal ranges, fronting the Inside Passage, was glorious. Our radar imaged glaciers around the world, like these near Mt. St. Elias, to help estimate their velocity downhill. STS059-228-94

Jay Apt shoots one of our science targets through Endeavour's overhead windows. Mounted in the adjacent window was a large-format Linhof camera, taking a strip of overlapping photos to map each target. (NASA sts059-46-025)

Jay Apt shoots one of our science targets through Endeavour’s overhead windows. Mounted in the adjacent window was a large-format Linhof camera, taking a strip of overlapping photos to map each target. (NASA sts059-46-025)

An example of our crew science photography is shown below. This frame came from our 250mm lens on the large-format Linhof camera, mounted in the starboard overhead window of Endeavour’s flight deck. Sometimes we used the other Linhof body and shot handheld frames, just sighting over the lens barrel at the ground below. The Linhof magazines contained about 100 shots, and we had to reload them from film canisters while “off shift” on the middeck.

Vertical view of Strait of Gibraltar. Spain to lower left. Morocco to upper right. Note current flow in strait and along coast. The advantages of Gibraltar's harbor are plain to see. (sts059-l19-837)

Vertical view of Strait of Gibraltar. Spain to lower left. Morocco to upper right. Note current flow in strait and along coast. The advantages of Gibraltar’s harbor are plain to see. (STS059-L19-837)

These bunks were on the starboard side of Endeavour’s middeck, stacked 4-high. Since each shift, Red and Blue, was off duty for 12 hours, we hot-bunked in the top three and used the bottom bunk for storage. Each station contained a reading light, fresh air vent, sliding privacy door, and a fleece sleeping bag. As this was my first flight, I didn’t realize that there were two bags in each bunk, clipped one atop the other, so I think I just hot-bunked in the same bag as Chili, probably. I slept in long pants, a T-shirt, and sweater, as it was a bit cool in the bunk. I even stuffed a sock in the vent to cut down on the cold breeze at “night.” I drifted off to sleep most nights with a Walkman playing a cassette for a few minutes; more than once I woke up to find the player drifting above my face, still delivering some soft music. In the morning, it would be tough to find the door in the pitch-dark compartment: turning over in the bag in free-fall meant that I had no way to determine which way was down, up, or the side that held the door. Groping around to find the reading light would usually set me straight. I had these bunks on three of my missions–they were quite comfortable, quiet, and private for sleep.

The SRL-1 Red Shift of Sid Gutierrez, Linda Godwin, and Kevin Chilton (bottom) prepares for their cozy night in Endeavour's sleep stations. (NASA STS059-22-004)

The SRL-1 Red Shift of Sid Gutierrez, Linda Godwin, and Kevin Chilton (bottom) prepares for their cozy night in Endeavour’s sleep stations. (NASA STS059-22-004)

May 2013: I just returned from a trip to the Mediterranean, and viewed Mt. Vesuvius from the Bay of Naples and the lovely town of Sorrento, Italy. Here is the incredible view of this active volcano from our SRL-1 imager. Vesuvius last erupted in 1944, nearly 70 years ago. It is long overdue for another outburst. Three million people live in the Naples area. Evacuation will be a huge challenge. May the mountain sleep for a long time.

Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR- C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's  P-45742 July 13, 1995

Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR- C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA’s Mission to Planet Earth.
P-45742 July 13, 1995

SRL-1 added to our knowledge of the Earth’s impact history, by examining scars left by collisions with asteroids and comets. Here is the Aorounga impact cratter in northern Chad. Although the main crater (shown here) is visible to astronauts from orbit, our radar scans revealed (beneath the sands) two additional candidate craters. Aorounga may be a crater chain, caused by the impact of a string of comet fragments, or an asteroid accompanied by a couple of moonlets. I spent hours searching the landscape below for the circular forms  of impact craters; it’s a pattern the human eye easily locks onto from orbit.

The impact of an asteroid or comet several hundred million years ago left scars in the landscape that are still visible in this spaceborne radar image of an area in the Sahara Desert of northern Chad. The concentric ring structure is the Aorounga impact crater, with a diameter of about 17 kilometers (10.5 miles). The original crater was buried by sediments, which were then partially eroded to reveal the current ring-like appearance. The dark streaks are deposits of windblown sand that migrate along valleys cut by thousands of years of wind erosion. The dark band in the upper right of the image is a portion of a proposed second crater. Scientists are using radar images to investigate the possibility that Aorounga is one of a string of impact craters formed by multiple impacts. Radar imaging is a valuable tool for the study of desert regions because the radar waves can penetrate thin layers of dry sand to reveal details of geologic structure that are invisible to other sensors. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 18 and 19, 1994, onboard the space shuttle Endeavour. The area shown is 22 kilometers by 28 kilometers (14 miles by 17 miles) and is centered at 19.1 degrees north latitude, 19.3 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA’s Mission to Planet Earth program. P-46712 March 20, 1996

Flight Day 9 called for a thorough pre-landing check of our reentry systems. The pilots, with Rich, our flight engineer and MS-2, stepped through hydraulic systems, flight computers, auxiliary power units (APSs), and thrusters to verify proper operation. We observed systematic thruster firings from the flight deck, and watched our elevons on the wing trailing edges rise and fall, driven by the now-awakened APU’s and hydraulic systems. Endeavour was coming fully alive; all was in readiness for entry the next day.

On Flight Day 9, Sid, Chili, and Rich ran through our flight control system checkout on Endeavour's flight deck.  NASA STS059-12-035.

On Flight Day 9, Sid, Chili, and Rich ran through our flight control system checkout on Endeavour’s flight deck.
NASA STS059-12-035.

Landing for our STS-59 crew came too soon, after 11 days in orbit. We had planned a 9-day mission, but our flight control team anticipated that power conservation aboard Endeavour would extend our mission to ten full days. Good power management by our payload team and Mission Control (and our keeping the lights and electricity consumption to a minimum in the cabin) secured that extra day. Our reentry was planned for April 19, but Kennedy Space Center weather prevented a return to the Florida landing site. We waved off the landing and returned to limited Earth observations for a final day; my Blue Shift went to bed immediately for 6-8 hours, then took over from our Red Shift for final cabin stowage and payload deactivation.

On April 20, weather at Kennedy was still NO-GO, so we targeted Edwards AFB in California for landing. Our crew was disappointed to not be heading for our families in Florida, but satisfied to be heading back to Earth with our successful science mission completed. Reentry over the nighttime Pacific was a spectacular experience–the plasma pulsing around our cockpit windows provided a mesmerizing light show that I’ll never see equaled. I was perched upstairs in the MS-1 seat next to Rich Clifford, MS-2. We aided the pilots, Sid and Kevin, as they guided Endeavour into southern California and our line-up for landing at Edwards.

Entry plasma seen through the overhead windows of the shuttle flight deck. NASA S08-102-2835

Entry plasma seen through the overhead windows of the shuttle flight deck. NASA S08-102-2835

Ripping over the California coast at more than Mach 5, it seemed to me that we’d never slow down enough to make the Edwards runway–I agreed with Sid’s assessment that “we’re headed for a landing in Arkansas!” But our flight computers were right on the money. Sid took control and put us gently on the concrete of Runway 22, an exhilarating touchdown for all of us aboard. Read about the entire return to Earth in “Sky Walking: An Astronaut’s Memoir.” Great landing, Sid and Kevin! Thanks a million for bringing us all home.

The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occurred at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes. NASA image. NASA STS059(S)07

The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occurred at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes. NASA image. NASA STS059(S)07

From the MS-1 seat, I shot video of our reentry aboard Endeavour. Jay took this shot after landing from the middeck ladder on the port side. STS059-47-11

From the MS-1 seat, I shot video of our reentry aboard Endeavour. Jay took this shot after landing from the middeck ladder on the port side. STS059-47-11

 

Post-landing, I felt laden with extra weight, as if my launch and entry suit were made of lead. That video camera feels like fifty pounds. Getting out of the seat took every bit of strength I could muster; I had to force my muscles to slide over and lower my “two-ton” body down the ladder.

Jay Apt on the middeck took this shot of the ground crew at Edwards opening Endeavour's hatch after our April 20 landing. NASA STS059-47-22

Jay Apt on the middeck took this shot of the ground crew at Edwards opening Endeavour’s hatch after our April 20 landing. NASA STS059-47-22

The ground crew is the first to sample the interior atmosphere of our sealed spacecraft, after six people have lived in that volume for 11 days. Our noses were used to any aromas, but they no doubt smelled the combined odors of our wet trash bin, the shuttle waste control system compartment, our dirty laundry, and six bodies who hadn’t showered in more than 10 days. They may have wanted to just close that hatch up again!

Shuttle Atlantis’ New Home at KSC March 8, 2013

Posted by skywalking1 in History, Space.
1 comment so far

Speaking to the “space-going “public at the Kennedy Space Center Visitor Complex at Cape Canaveral, FL, I find the energy level among visitors is already pretty high. But it’s about to get a tremendous boost when the Space Shuttle Atlantis exhibit opens on June 29, 2013. I visited the construction site this week and was amazed at the way Atlantis will be displayed to the public.

Visiting Atlantis on March 5, 2013. (Tom Jones)

Visiting Atlantis on March 5, 2013. (Tom Jones)

Atlantis was the last space shuttle orbiter I would fly, on STS-98, so even shrink-wrapped as she is, I am still moved when visiting the ship that took me to space, kept me alive to work at the International Space Station, and returned me safely to my family.  Delaware North, the company that runs NASA’s visitor complex here, is spending about $85 million to give visitors an up close and personal look at the orbiter. She’ll almost be close enough to touch, and Atlantis is positioned in a steep left bank, giving guests a breath-taking sense of her impressive wingspan.

Entering the building, guests will get a capsule history of the space shuttle’s history from its designers and astronauts, then a high-def introduction to Atlantis’ storied career, beginning with her first flight in 1985. Leaving the theater, visitors will walk “through the screen” to view the orbiter as she looked when in orbit. Close at hand will be a mockup of the Hubble Space Telescope. A wide ramp will enable visitors to spiral down and around the orbiter to see Atlantis, her cargo bay, windows and cabin, wings, engines, and heat shield tiles from every angle. Beneath the orbiter will be a roomy plaza, where guests will enter the Shuttle Launch Experience simulation. With blast-off under their belts, visitors will exit to a simulation bay where a future space traveler can try one’s own hand at flying and landing the space shuttle.

Atlantis' immense heat-shield-tiled belly, towering above visitors. (Tom Jones)

Atlantis’ immense heat-shield-tiled belly, towering above visitors. (Tom Jones)

You’ll have to drag me out of Atlantis’ presence–it’s going to be that good!

Remember, before leaving Atlantis’ home, pick up a copy of my story detailing my Atlantis mission to the ISS on STS-98, and my three other missions: Sky Walking: An Astronaut’s Memoir.

http://www.AstronautTomJones.com

Astronaut Selection in 2013 – Duane Ross Interview February 12, 2013

Posted by skywalking1 in Space.
2 comments

Astronaut as Explorer: Jack Schmitt on Apollo 17, December 1972.
(NASA)

Duane Ross ran the selection process when I was lucky enough to be hired in 1990. He’s still at it. He and Teresa Gomez were our guides through the process and welcomed my colleagues once we were selected and planning our moves to Houston. Here is his take on the latest round of astronaut selections: Popular Science Q&A: How NASA Selected The 2013 Class Of Astronauts.

Good luck to the new candidates (when announced) and to future applicants and colleagues!

Tom Jones

www.AstronautTomJones.com

To Be An Astronaut – 2013 Edition February 6, 2013

Posted by skywalking1 in Space.
Tags: , ,
add a comment
Tom Jones in front of shuttle Enterprise, National Air & Space Museum

Tom Jones in front of shuttle Enterprise, National Air & Space Museum

Twenty-three years ago, in January 1990, I received an invitation to join NASA’s Astronaut Corps. It was the best job I ever had (read about my selection, training, and exhilarating flights in “Sky Walking: An Astronaut’s Memoir.” I’m frequently asked today for tips or advice on how new applicants — some very bright and talented people — can improve their chances of threading NASA’s selection process and achieving their dream of spaceflight. Here are a few thoughts:

  • Consult NASA’s astronaut selection and training site to learn the basic requirements and procedures. But — you’ve already done that.
  • Participate in some outdoor, physical, active hobby or pursuit that complements your day job and shows aptitude for skills needed in spaceflight. If you’re having fun, you’ve chosen a good activity! Keep getting better at it.
  • Increase your chances of passing the NASA physical by following a regular exercise and fitness program. Get to your ideal weight – it makes a good impression and avoids health problems later.
  • Become conversant about one specific aspect of the NASA human spaceflight program — present or planned — and be able to discuss it comfortably with the selection panel. You should know what you’re getting into.
  • Be meticulous about your application. Typos and grammatical errors were an instant turn-off for me when I was at NASA. Showcase your professional skills in writing and communication.
  • Tell NASA in your application what you will bring to their team. How will you help advance specific NASA goals?

Once your application is in, keep improving your resume. If you are offered an interview, you’ll be able to bring new and interesting material to the Selection Panel interview. If you are offered that trip to Houston for an interview:

  • Ask questions on your visits to the Astronaut Office. Poke your head in the office doors and ask crewmembers what they are working on, and what they like and dislike about the job.
  • In the interview, be yourself. Keep your answers brief and specific, but don’t be afraid to speak plainly and sincerely. The panelists want to get a sense of who you are – and if they would like to work with you.
  • Let your natural enthusiasm for space shine. Be professional yet enthusiastic. I was eager to get the chance to interview, and let the panelists know it.
  • Take the long view. If not selected, you can apply again. Resolve to go back to your present job and to improve your qualifications for the next round.
  • Network with your fellow applicants, online, and in Houston. Perhaps someone chosen can help you with advice for the next opportunity. And you might make a life-long friend.
  • Have fun!

I believe NASA will keep hiring small numbers of astronauts to keep their work force adaptable and energized. See the report of the NRC panel on the future of astronaut training that I helped prepare in 2010. And remember that the commercial spaceflight sector, as it grows, will also need talented crewmembers. There are broader opportunities today than ever before in space, although the numbers of people flying to orbit annually will remain at less than a dozen, at least for another five to ten years.

Good luck! Say hello to my friends on the selection panel. And send me a note from space!

Tom Jones

www.AstronautTomJones.com

 

Saying Good-bye to Endeavour September 14, 2012

Posted by skywalking1 in History, Space.
add a comment

On my week-long speaking tour at Kennedy Space Center Visitor Complex, I drove out with communicators Nick Thomas and Mark Smith to visit my first shuttle, orbiter OV-105, Endeavour. Today she was being readied for her final voyage to the West Coast and future home at the California Science Center. Hoisted atop the NASA 747 carrier aircraft, Endeavour was the center of attention as the skilled shuttle techs fastened the orbiter to her three attach points on the shuttle carrier. On Monday she’ll take flight enroute to Houston, El Paso, Edwards Air Force Base/Dryden Flight Research Facility, and finally, LAX.

Endeavour was a superb ship to live and work aboard. Our two Space Radar Lab missions, in 1994, aboard OV-105 were tremendously successful Missions to Planet Earth. (More on those research flights in the coming week as we approach the 18th anniversary of the liftoff of STS-68, SRL-2.) Read about my adventures on Endeavour in “Sky Walking: An Astronaut’s Memoir.”

Astronaut Tom Jones with OV-105 Endeavour, 14 Sep 12.

I will miss Endeavour’s regular presence in space. May we Americans soon send her successors into space to fulfill her legacy.

www.AstronautTomJones.com

Kennedy Space Center and Neil Armstrong September 12, 2012

Posted by skywalking1 in History, Space.
add a comment

Sept.  12, 2012

I’m speaking here this week at Astronaut Encounter at the Kennedy Space Center Visitor Complex, meeting people from all over the planet, I’m energized by the enthusiasm and thirst for new discoveries in space shown by our visitors. The spirit of space exploration, pioneered by Mercury, Gemini, Apollo, Skylab, the Space Shuttle, and now the International Space Station, is captured here at the Visitor Complex. Here we come face to face with the history and hardware of the last fifty years of our work on the space frontier. I’m like a kid in a candy store.

The Mercury-Atlas rocket and capsule, a replica of the booster that sent John Glenn around the world on America’s first orbital flight, was just erected here at the Visitor Complex. The Mercury-Atlas joins the Gemini-Titan II, an actual space booster, towering over the smaller vehicles in the Rocket Garden. The Gemini Titan II was assembled and tested in Middle River, MD, about two miles from my boyhood home. As a 10-year-old boy, I visited Gemini Titans for Geminis 7 and 8, and secretly promised myself I would one day ride a rocket. The biggest booster in the Rocket Garden is the Saturn IB that stood by as the rescue launcher for our Skylab space station crews.

Image

Mercury-Atlas 6 Replica

KSC Visitor Center Complex

Image

Gemini IX launch (NASA)

Space shuttle Endeavour—my first ship–leaves here Monday for its final voyage to the West Coast, and Atlantis will move to the Visitor Complex this fall, to its permanent home welcoming returning astronauts and all those who love the story of spaceflight.

Image

Visiting Endeavour, Sept. 11, 2012

Just a few miles north is the Apollo-Saturn V moon rocket, on spectacular display overlooking Banana Creek and Launch Complex 39 pads that sent Americans to the Moon (and me aloft on my four space shuttle flights).  I’ve been lucky enough to meet many of the Apollo astronauts, and had the pleasure of working with several at NASA’s astronaut office, on the NASA Advisory Council, and in the educational efforts of the Astronaut Scholarship Foundation.

One of those exemplary figures was Neil Armstrong, whom we lost last month when he passed away at age 82. Neil, the first human to walk on the Moon, will be memorialized tomorrow at the National Cathedral. He was a skilled aviator, test pilot, and engineer, a committed explorer, an able spokesman on the importance of exploration to the nation, and a role model for an entire generation of astronauts.

Image

Full credit and thanks to ©Steve Breen: San Diego Union Tribune

I most appreciated his modesty and dignity as he dealt with the celebrity that history thrust upon him. Neil made his fame serve a higher purpose. We honor his service and courage, and we will miss him.

Here at Kennedy Space Center, NASA and its partners are creating our future in space in the form of the machines that will carry our footsteps alongside Neil and his colleagues, then beyond to the nearby asteroids and Mars. Even more important, though, are leaders who will commit us to challenging goals on the space frontier, follow through with the resources needed to succeed, and inspire our young explorers to fulfill that dream.

Tom Jones is a veteran astronaut, planetary scientist, and author of Sky Walking: An Astronaut’s Memoir:  www.AstronautTomJones.com.

Search for the City Killers July 3, 2012

Posted by skywalking1 in Space.
2 comments

Artist concept of near-Earth asteroid entering the atmosphere, seconds from an impact. (ESA)

July 3, 2012

The B612 Foundation announced last week that it will raise funds to launch and operate a space-based telescope to search for dangerous near-Earth asteroids (NEAs). The hazard from these bodies is real. The Tunguska impact in Siberia, in 1908, was caused by Earth’s collision with a small asteroid, about 40 meters across, which exploded with the force of 3 to 5 Megatons of TNT, enough to level a major city. There are about a million near-Earth asteroids big enough to penetrate Earth’s atmosphere and cause city-wide or regional destruction; Tunguska-sized impacts occur every few centuries. Each year, about thirty explosions as powerful as the Hiroshima A-bomb occur in the high atmosphere from small asteroid impacts.

Today, we know of less than 10,000 of these objects. The number of detections is growing rapidly, thanks to NASA’s search program. The agency spends $20M per year on asteroid detection and research. One good result is that NASA-funded Earth-based telescopes have discovered about 90% of all NEAs > 1 km (about 5/8 mile) in diameter. These objects could cause global damage if they struck Earth. Fortunately, none is on a collision course in the next century (see the most worrisome impact threats here). In fact, today we know of know of no asteroids with a high probability of impact.

There’s the rub: We have detected and have orbits for less than 1% of the asteroids capable of causing extensive damage on Earth. We need a much more thorough search. At the current pace of NASA funding, we will not find these numerous small asteroids for decades. To fill this detection gap, the private B612 private foundation (full disclosure: several friends are involved in running B612) wants to launch Sentinel, a sun-circling space telescope to find these dangerous asteroids.

Two astronaut colleagues are principals in the B612 effort: Rusty Schweickart (Apollo 9) and Ed Lu (shuttle, Station). Sentinel will be privately funded, and once launched, will deliver NEA detection results to NASA, and through the Minor Planet Center, to other space agencies and scientists.

Sentinel has a main mirror about half a meter wide, and stands about eight meters tall. The relatively simple spacecraft is based on the Kepler planet-hunting telescope and the detectors are based on those of the WISE infrared telescope. The mission will cost about $500M over a decade, about the same as a typical Mars orbiter or Discovery-class interplanetary mission.

Our ground-based asteroid observatories search only at night, and can’t look too close to the Sun, missing those NEAs which spend much of their time in Earth’s daytime sky. To overcome those limitations, Sentinel will orbit the Sun in an orbit similar to that of Venus, about 0.7 the distance of Sun to the Earth. Racing on the inside track interior to Earth’s orbit, Sentinel will discover NEAs more efficiently than ground-based telescopes: it will sweep through the asteroid swarm more rapidly than Earth, and looking outward past Earth, it will see small asteroids inside Earth’s orbit, those usually invisible to terrestrial telescopes.

Sentinel will detect heat, or radiation in the infrared portion of the spectrum, where asteroids shine brightest. It will ignore background stars and look for rapidly moving objects—NEAs. The telescope will relay the orbits of asteroids it detects to the Minor Planet Center catalog. NASA will then run an analysis of these thousands of new orbits to look for possible future impacts.

If funds are available, Sentinel can launch in about five years. Once in its Venus-like orbit, the mission will take about 5.5 years to detect and map most of the small asteroids bigger than 50 m across.

NASA itself has studied NEA search missions like Sentinel, but in its current budget straits the agency says it cannot afford it now. The White House has chosen not to budget for such a telescope and its “asteroid insurance” policy, waiting for Congress to appropriate the funds. For its part, Congress in 2005 directed NASA to find 90% of the NEAs that are larger than 140 m, representing most of the remaining impact risk to Earth. But it has failed to deliver explicit funding for the telescope mission.

If we find a NEA on a collision path, we have the technology to divert it –– and prevent a cosmic disaster. We only have to change the velocity by ~ 1mm/sec to make an asteroid miss its appointment with Earth, years later. Three methods are promising:

  • the gravity tractor (slight force on an asteroid exerted by gravity of hovering spacecraft)
  • kinetic impact (smacking an NEA with a hypervelocity slug to change its velocity)
  • nuclear explosive (vaporizes thin top layer of NEA surface, pushing asteroid in opposite direction of blast. Rarely needed, but can divert large NEAs, comets, or those discovered very late)

[Read more about how we’ll decide on preventing an impact through the work of the Association of Space Explorers.]

The enabler for all three solutions is early warning. As JPL comet and asteroid scientist Don Yeomans says, the top three priorities for diverting an NEA are:

  1.  Find them early!
  2. Find them early!
  3. Find them early!

That’s where Sentinel comes in. The Sentinel project or one like it is the fastest way for us to reveal the cosmic shooting gallery within which Earth orbits. B612 has decided not to wait for NASA, and to start the discovery process now.

Astronaut colleague Rusty Schweickart says that right now, we are driving around the solar system without insurance. The B612 team plans to fly Sentinel, and work with NASA along the way to get this vital NEA tracking information to society. An important side benefit is that Sentinel will also tell NASA which asteroids are in the best, most accessible orbits for future astronaut expeditions to the nearby NEAs.

Tom Jones is a planetary (asteroid) scientist, veteran NASA astronaut, speaker, and the author of “Planetology: Unlocking the Secrets of the Solar System.” (Chapter 2 is all about asteroid impacts.)

www.AstronautTomJones.com

Tom Jones comments on B612 Sentinel Mission — July 2, 2012

Oh, Shenandoah… May 18, 2012

Posted by skywalking1 in History, Space.
Tags:
add a comment

Shenandoah River valley in Virginia
from STS-59 Endeavour
NASA STS059-225-072

Endeavour’s STS-59 crew took this look, on April 18, 1994, at the north and south Forks of the Shenandoah River. North is to the left. Seen in sunglint, the South Fork (top) and the North Fork (bottom) of the Shenandoah meet at upper left; Front Royal, Virginia is just above the combined rivers at the junction. Massanutten Mountain, covered by reddish-brown fallen leaves of the George Washington National Forest, separates the river forks in springtime view. Skyline Drive and the Appalachian Trail run along the Blue Ridge from upper left to mid-scene right, NE to SW. Passage Creek flows toward upper left in the interior, Fort Valley of Massanutten, finally reaching the Shenandoah’s north fork.I-66 enters this view from the top left center, from Washington.

At center left are the scars of two limestone quarries, which have now grown larger and threaten the Cedar Creek Civil War battlefield just left of the junction between I-66 and I-81. The Alleghenies form the mountain barrier to the west (bottom). Signal Knob is the promontory at the left (north) end of Massanutten; it was a critical Confederate observation point prior to the Cedar Creek battle in October 1864. Across this scene, Stonewall Jackson played out his masterful Valley Campaign in spring 1862. Employing audacity and rapid, unpredictable movements on interior lines, Jackson’s 17,000 men marched 646 miles (1,040 km) in 48 days and won several minor battles as they successfully engaged three Union armies (52,000 men), preventing them from reinforcing the Union offensive against Richmond.

Whenever one looks out the cabin window, the sweep of history and Earth’s natural beauty can nearly overwhelm an astronaut. But our work on Space Radar Lab 1 pulled us reluctantly away. Hope this view will inspire you to make time for a hike on the AT or up Massanutten.
(NASA STS59-225-072).

SpaceX, NASA Ready for Vital Test May 18, 2012

Posted by skywalking1 in Space.
14 comments

Falcon 9/Dragon (SpaceX)

Tomorrow morning at 4:55 am EDT (May 19), SpaceX will attempt to launch its Falcon 9 booster, carrying the Dragon cargo capsule, to the ISS. SpaceX built the Falcon 9 and Dragon as part of NASA’s commercial orbital transportation services (COTS) program, combining private and NASA/taxpayer funds to supply the Station after shuttle retirement.

 SpaceX has received about $400 million for the test launches, and has a contract worth $1.6 billion for 12 cargo shipments to the ISS. Founded in 2002, Elon Musk’s company has flown its Falcon 9 to orbit twice, and its Dragon capsule once. On that Dec. 2010 orbital mission, Dragon became the first private spacecraft in history launched to and recovered from orbit.

 This mission will combine two previously planned missions, a Dragon orbital test with an approach to ISS, and a second mission to berth with ISS and deliver a demonstration cargo shipment. Tomorrow’s 2-week flight will try to test Dragon in orbit and also berth with ISS. On this flight, Dragon will for the first time:

— Deploy solar panels for power (instead of using batteries)

— Employ rocket thrusters for maneuvering, and guidance software to fly formation with  ISS

— Be grappled by the ISS crew and berthed to the Earth-facing (nadir) hatch in the Harmony module (Node 2) at the forward end of the ISS.

 If all goes well, on Tuesday, May 22 (Flight Day 4), the SpaceX team will attempt its close approach to the Station, followed by grapple operations and berthing. Dragon will stay at the ISS for about nine days, deliver its cargo, be loaded with trash and returning science hardware, and then be unberthed for departure. Following a retro-rocket burn, Dragon will re-enter the atmosphere, deploy parachutes, and splash down off the California coast for recovery.

 Importance for NASA

 SpaceX’s launch is the first cargo delivery to the ISS under NASA’s commercial services contract. NASA needs SpaceX and its other commercial partner, Orbital Sciences (whose first test launch may come in August) to succeed. NASA will rely on these companies in order to deliver cargo once launched by the space shuttle. Cargo launches by Russia, Europe, and Japan cannot make up the demand if these private companies do not succeed.

So overall commercial launch success is vital to NASA’s attempt to lower costs, escape the Russian cargo monopoly, and fill ISS cargo demands after shuttle retirement (some 40 metric tons through 2015).

 Technical Challenges

 SpaceX is nearly 3 years behind schedule on delivery of cargo to ISS (as is Orbital), as the companies have wrestled with everything from new rocket designs to delays in launch pad construction. This is a tough mission: Dragon has not flown as a maneuvering spacecraft, where it will exercise its navigation software, proximity operations sensors, thrusters, and solar power systems, all needed to reach the ISS. Most critically, the guidance and navigation software must perform flawlessly to enable formation flying within 30 feet of ISS; software checkout has caused months of delays, and in no case must Dragon endanger crew safety or the safety of ISS.

 If it can approach safely, my colleagues Don Pettit and Andre Kuipers will reach out with the ISS robot arm and grab Dragon.  Berthing via the robot arm will follow, followed by leak checks, hatch opening, and cargo transfer.

 Most experts think Falcon 9 will launch successfully and put Dragon in orbit, but that Dragon may not achieve berthing with ISS. I rate the odds about 50/50 on an actual berthing with the Station.

 Implications of failure

 Success on the Dragon mission will make NASA’s commercial cargo strategy look like a good choice, with progress being made toward buying cargo services routinely. Success will also burnish the follow-on plan to send astronauts to ISS on commercial ships, around 2017. If Dragon launches on Falcon 9, but does not make it to ISS, SpaceX will claim that they at least accomplished the original first test flight objectives. They can then fly a second mission (as originally planned) to achieve rendezvous and berthing, after fixing any shortcomings.

 Of course, it’s the nature of the space business that a failure always helps pave the road to eventual success. NASA and SpaceX can claim that “we learned from the test” – and they will go ahead with the next test launch as soon as possible. But a failure will anger a Congress very skeptical of the commercial crew launch approach, even as it recognizes the need for commercial cargo services.

 If SpaceX suffers a spectacular failure, (and I’m rooting for success), you’ll see calls for NASA to reshape its plans for commercial astronaut launches. Congress the past couple of years has appropriated only half the funds requested by White House for commercial astronaut launches. A Dragon failure may cause legislators to reduce NASA’s private astronaut launch funding even further. Without those funds, NASA’s 2017 date for commercial astronaut launches will slip further. Congress instead may force NASA to choose a proven satellite booster (Delta IV or Atlas V) and one commercial space capsule to restore astronaut access to Earth orbit as soon as possible.  

 Already, we are waiting far too long to restore our ability to get our people to the ISS. It will take much more than Dragon success to correct the fix we are in in terms of providing vital space access. We’ve lost three years as NASA’s commercial program has lagged. It will cost more, but I think NASA itself should quickly build a rocket/capsule system to restore our access to ISS. We are risking our $100 billion investment in the Space Station as we go year after year without a domestic rocket to get our crews up there, all the while paying the Russians $55M+ per seat (going to $63 million soon). When the commercial firms are ready, they should replace the NASA interim system. This dual-track approach costs more, but recognizes the risk to our Space Station operations posed by exclusive Russian access. Prudent leaders will increase the NASA budget to quickly restore our own launch capability. This might cost us 0.6% of the federal budget, rather than 0.5%. We can afford that investment. I don’t think we can afford the risk of not doing so.

 I wish NASA success on the cargo launch, because my colleagues and friends working on the ISS need the supplies – and so we can stop paying the Russians, too. My estimate is that Dragon will not make it all the way to ISS on this first attempt. I hope SpaceX scores a big success, but what they are trying is truly “rocket science.”

 One measure of how hard this rendezvous and berthing job is comes from shuttle experience. We never failed to dock the shuttle at Mir or ISS, but it took humans at the controls to achieve that record. Mission Control can help, but in the end Dragon’s computers have to come close to human piloting skills, and that’s a lot to ask on a first attempt.

 www.AstronautTomJones.com

 

 

 

Alaska Coast from Shuttle Endeavour, April 18, 1994 May 17, 2012

Posted by skywalking1 in Space.
add a comment

Glaciers near Mt. St. Elias, Alaska
STS059-228-94

Mount St. Elias and glaciers spilling into the sea, Alaska Peninsula

Our mission aboard Endeavour with the Space Radar Lab 1 was nearly over. Yet Earth was ever-fascinating, as in this view from along Alaska’s coast. In this view, (with thanks to NASA’s Earth Observation office for the research), the spring thaw along the coast of the Gulf of Alaska has not touched the St. Elias Mountains, southeast of Yakutat Bay and Malaspina Glacier. A prominent glacier flows from Mt. Fairweather (15,300 feet) at right center, to form Cape Fairweather. Another glacier to the northwest almost reaches the sea; the valley of the Alsek River forms a broad, braided plain at upper left. In this 250mm Hasselblad telephoto shot, the low sun elevation and oblique angle provide a 3-dimensional appearance to the black-and-white landscape.

I later cruised the inside passage of Alaska’s panhandle with my family, and these mountains and glaciers were a marvel. Our crew was blessed with 11 days of views like this, around the globe. I’m still trying to check off a few more with visits on the ground!
STS59-228-094

www.AstronautTomJones.com