jump to navigation

July 1, 2014

Posted by skywalking1 in Space.
add a comment

FROM AIAA Daily Launch, July 1, 2014:

ARM Promoted As Fruitful First Step Toward Mars. In an article for the Space Review (6/30), Louis Friedman, Executive Director-Emeritus of the Planetary Society, and Thomas Jones, veteran astronaut and senior research scientist at the Florida Institute for Human and Machine Cognition, wrote about why NASA’s Asteroid Redirect Mission (ARM) is the “affordable and logical first step” for NASA to send people to Mars despite what the recent National Research Council (NRC) Committee on Human Spaceflight report claimed. With the Apollo and ISS programs the only “successful examples of government support for human space exploration initiatives,” the authors believe that ARM can build the “sustainable momentum” needed at a time there is no “strong geopolitical rationale” for missions to Mars. ARM also would get astronauts into deep space “much sooner, and at much lower cost” than a lunar mission, although the authors do not rule out missions to the moon. Just by examining the NRC report’s recommendations, ARM was an “attractive first step” toward Mars.

An Orion astronaut samples the ancient surface of the ARM asteroid in lunar orbit. (NASA)

An Orion astronaut samples the ancient surface of the ARM asteroid in lunar orbit. (NASA)

See my latest speeches, articles and images at www.AstronautTomJones.com

 

Endeavour Rollout to Launch Pad 39A, Aug. 8, 1995 March 20, 2014

Posted by skywalking1 in History, Space.
add a comment

Space Shuttle Endeavour launched on its STS-69 mission on September 7, 1995. The orbiter and stack had rolled back to the VAB on Aug. 1 to avoid the effets of Hurricane Erin. I was one of the capcoms (astronaut communicator working in Mission Control) for the mission, and I had never seen a space shuttle stack move out to the launch pad. So I took advantage of an invitation from the STS-69 crew (Dave Walker, Ken Cockrell, Jim Voss, Mike Gernhardt, and Jim Newman) to join them for the rollout. Our pair of T-38s headed from Ellington Field near Johnson Space Center for the Cape on the afternoon of Aug. 7, 1995.

NASA 907 off the wing of NASA 902, flown by Cockrell/Jones. (Jones photo)

NASA 907 off the wing of NASA 902, flown by Cockrell/Jones. 8/7/95 (Jones photo)

After spending the night at astronaut crew quarters, we were up the next morning to join Endeavour on her roll to the pad, which had begun in darkness at 1:55 am. We drove out to the crawlerway, once the route of Saturn V moon rockets to the pad, catching a heart-stopping view of the shuttle stack about two-thirds of the way to Launch Pad 39A. We parked along the road to step aboard the Mobile Launch Platform and get up close to the orbiter I’d flown twice in the previous year (STS-59 and STS-68).

The STS-69 Endeavour stack plods toward Launch Pad 39A on 8/8/95. (Jones photo)

The STS-69 Endeavour stack plods toward Launch Pad 39A on 8/8/95. (Jones photo)

I had never boarded the MLP while in motion, but it was easy to jump aboard the gangway at its 1 mph pace along the crushed river stone of the crawlerway and climb to the deck. Here I was within touching distance of the Endeavour stack, this time unprotected from any pad structure, as on my prelaunch visits to my ship in 1994. Endeavour was independent and self-supported, gliding toward its appointment with orbit, oblivious of the human gnats buzzing around her with a Nikon draped around their necks.

An early morning  view of Endeavour's main and OMS engines from the mobile launcher deck. (Jones photo)

An early morning view of Endeavour’s main and OMS engines from the mobile launcher deck. (Jones photo)

I think the focus on the above shot is a bit soft, due to the early morning light at the Cape–we got their shortly after dawn. The two tab-shaped gray structures on either side of the orbiter’s tail also belonged to the MLP. They housed the T-minus-zero umbilicals (“T-zero umbilicals” was how we said it), those clusters of gas, power, and propellant lines that fed into the ship on either side, just below the OMS pods. Through these umbilicals the external tank received its propellants, the orbiter received commands and electrical power and sent back telemetry, and its plumbing was furnished with gaseous nitrogen for purging the payload bay and engine compartment. At zero in the count, the umbilical panel was yanked away by a falling counterweight, retracted into the gray structure, and protected from the fierce exhaust blast by armored doors that slammed down over the now-recessed umbilical plate.

The "T-Zero" umbilical panels retract into these twin, armored gray towers flanking either side of Endeavour's engine compartment. (Jones photo)

The “T-Zero” umbilical panels retract into these twin, armored gray towers flanking either side of Endeavour’s engine compartment. (Jones photo)

While pacing the MLP and craning my neck back to look up at Endeavour (as close as I’d been since my landing at Edwards on STS-68 the previous October), I had to get myself in the picture. I’d lived aboard this ship in space for three weeks in 1994, yet it was still hard to wrap my head around that reality. How is it possible that we could have hurled this entire machine into space at five miles per second, with six humans aboard, and brought it back safely to Earth? We have deliberately chosen to walk away from this national capability. Today, if we don’t choose to use these machines any longer, we must quickly–very quickly–develop an alternative national means to send our people to space. Not accelerating this development is sheer negligence on a national scale.

Tom Jones, who flew twice on Endeavour, stands beside the machine he can't quite fully believe took him to space. (Jones photo)

Tom Jones, who flew twice on Endeavour, stands beside the machine he can’t quite fully believe took him to space. (Jones photo)

We dropped back to Earth again, stepping onto the crawlerway for a few more photos as the mobile launcher neared the incline to the top of Pad 39A. These views just kept me grinning and shaking my head in awe. I will be similarly amazed when a mobile launcher carries the first Space Launch System booster to its pad.

The mobile launcher carries Endeavour to the base of the incline leading up to Pad 39A. (Jones photo)

The mobile launcher carries Endeavour to the base of the incline leading up to Pad 39A. (Jones photo)

Endeavour, OV-105, began its ascent of the ramp to 39A as I took up a perch on the Rotating Service Structure, seen to the left in the photo above. This was the rail-mounted “gantry” that would swing in behind the orbiter, once it was in position, and enclose most of the orbiter for protection from the weather. It would also provide clean-room access to the payload bay, enabling technicians to transfer payloads from a mobile canister from the RSS into the payload bay. For me, the top of the RSS provided a fantastic photo vantage point for me and the Nikon F4 I’d borrowed from the photo lab at JSC.

Endeavour seen from the RSS, preparing for the final climb to the pad summit. (Jones photo).

Endeavour seen from the RSS, preparing for the final climb to the pad summit. (Jones photo).

Endeavour begins its climb up the pad incline to its MLP pedestals on Pad 39A. (Jones photo)

Endeavour begins its climb up the pad incline to its MLP pedestals on Pad 39A. (Jones photo)

The MLP jacks up its rear trucks to level the deck and keep Endeavour upright as the climb continues. (Jones photo)

The MLP jacks up its rear trucks to level the deck and keep Endeavour upright as the climb continues. (Jones photo)

Closing in on the summit of Pad 39A. (Jones photos)

Closing in on the summit of Pad 39A. (Jones photos)

From atop the RSS I head the constant roar of the crawler’s diesels (in turn powering electric motors that drive the tracks) as it mounted the pad elevation.

Endeavour atop the MLP is pulling under my vantage point on the Rotating Service Structure. (Jones photo)

Endeavour atop the MLP is pulling under my vantage point on the Rotating Service Structure. (Jones photo)

If there’s anything that will bring a grin to your face, it’s the sight of a spaceship almost imperceptibly rolling up alongside of you. The orbiter seemed to say: “Comin’ through! I’m headed for orbit. Stand aside!”

A look into the flame trench as Endeavour nears its parking spot atop the pad. Note the flame deflector positioned beneath where the boosters will sit. (Jones photo)

A look into the flame trench as Endeavour nears its parking spot atop the pad. Note the rail track which will permit the RSS to swing in behind the orbiter once it’s parked. (Jones photo)

Endeavour pulls even with the pad structure as I stood, amazed, just above the orbiter White Room level on the RSS.

The crawler carrying the MLP and Endeavour reaches its final parking position. (Jones photo)

The crawler carrying the MLP and Endeavour reaches its final parking position. (Jones photo)

Here, the crawler would lower the stack onto the four massive launch platform pedestals, then drive back down the incline for its next job. Back on the MLP deck, I got a look at the base of the external tank and its structural connections to the solid rocket boosters. Each booster is held to the platform by 4 massive bolts and nuts, which shatter under explosive detonations at T-minus-zero.

Endeavour's body flap hangs below the ET, flanked by the solid rocket boosters. The gray piping dispenses the flood of sound suppression water at engine ignition. (Jones photo).

Endeavour’s body flap hangs below the ET, flanked by the solid rocket boosters. The gray piping dispenses the flood of sound suppression water at engine ignition. (Jones photo).

I flew home later that afternoon, with Ken Cockrell at the controls. I hope he’ll be able to figure out who the crew is in T-38 #907, based on the helmet colors in the photo. STS-69 launched on September 7, 1995:

Endeavour leaves Earth on September 7, 1995, for its 11-day mission. (NASA KSC-95EC-1301)

Endeavour leaves Earth on September 7, 1995, for its 11-day mission. (NASA KSC-95EC-1301)

My thanks to the STS-69 crew for allowing me to share their orbiter’s rollout, and for inviting me to work with them as a capcom on their mission. Of course, Ken Cockrell and I flew together just 14 months later on STS-80. But that’s another story. See my website here for more details:

www.AstronautTomJones.com

STS-68, Endeavour, Space Radar Lab 2, Sep. 30-Oct. 11, 1994 September 4, 2013

Posted by skywalking1 in History, Space.
add a comment
Mission Patch for STS-68, Space Radar Lab 2

Mission Patch for STS-68, Space Radar Lab 2

This month is the 19th anniversary of the Space Radar Lab 2 mission, STS-68. I was the payload commander, along with Mike Baker (CDR), Dan Bursch (MS2), Steve Smith (MS1), Terry Wilcutt (PLT), and Jeff Wisoff (MS3). An ambitious follow up to the successful STS-59, Space Radar Lab 1, SRL-2 was aimed at flying the multi-frequency, multi-polarized Shuttle Imaging Radar-C, X-Band Synthetic Aperture Radar, and the Measurement of Air Pollution from Satellites sensors in the northern hemisphere late summer, to map the Earth during a contrasting season of the year to SRL-1’s spring flight.

Our launch was planned on August 18, 1994, but at dawn on that date, when Endeavour’s main engines (SSMEs) ignited, the #3 engine violated a redline constraint, and the GPCs ordered an abort and engine shutdown. They automatically called for a shutdown when the discharge temperature on MPS SSME Main Engine #3 High Pressure Oxidizer Turbopump (HPOT) exceeded its redline value. The HPOT typically operates at 28,120 rpm and boosts the liquid oxygen pressure from 422 psia to 4,300 psia. There are 2 sensor channels measuring temperature on the HPOT. The B channel indicated a redline condition while the other was near redline conditions. The temperature at shutdown was at 1563 degrees R. while a normal HPOT discharge temperature is around 1403 degrees R. The redline limit to initiate a shutdown is at 1560 degrees R. This limit increases to 1760 degrees R. at T-1.3 sec (5.3 sec after Main Engine Start). Main Engine #3 (SN 2032) has been used on 2 previous flights with 2,412 seconds of hot-fire time and a total of 8 starts. This was the first flight for the HPOT on Main Engine (SSME) #3.

Endeavour's main engines are nearly at full thrust, when, at 1.9 seconds prior to liftoff, an overheat triggered a pad abort. (NASA)

On Aug. 18, 1994, Endeavour’s main engines were nearly at full thrust, when, at 1.9 seconds prior to liftoff, an overheat triggered a pad abort. (NASA)

What all of this meant to me on the middeck (sitting next to Jeff Wisoff), was that as I felt the SSMEs rumble to life, I began mentally counting down the six seconds til booster ignition at T-minus-zero. Braced against the massive jolt of those SRBs exploding into life, I instead felt the engine vibration die away just as Terry Wilcutt shouted “Right engine down!”, accompanied by the blare of the master alarm. This meant serious trouble.

Out the hatch window to my left, I noted the gantry structure seeming to sway left and right under the vanished shove from Endeavour’s main engines–that was US swaying back and forth. Jeff and I hurriedly threw off our parachute straps and prepared to scoot across the middeck to open the hatch; we might all have to make a beeline to the escape slides on the far side of the gantry’s 190 foot level. We stayed on intercom, waiting for the word to egress.

Tom Jones strapped into Endeavour's middeck MS-4 seat, during countdown rehearsal in early August, 1994. (NASA ksc-94pc-967)

Tom Jones strapped into Endeavour’s middeck MS-4 seat, during countdown rehearsal in early August, 1994. (NASA ksc-94pc-967)

Within the first minute, Launch Control had our pilots executing the pad abort checklist, entering computer commands that would stop the backup flight software from jettisoning our solid rocket boosters at T+2 minutes (embarrassing and deadly). As Jeff and I cleared our seats in the middeck and stood by to open the hatch, we heard reassuring words from Launch Director Bob Sieck’s team that the computers had executed an orderly shutdown, and no fire or explosion risk was evident.

“Damn! We’re scrubbed!” Jeff opined that we’d be set back at least three weeks by the necessary engine changeout. In fact it would take six weeks for our rollback, engine change, and rollout. STS-64 would slip ahead of us and fly in early September with its LITE laser sensor payload. Our new launch date would be Sept. 30, 1994.

The launch team did a superb job on our abort–the last pad abort in the space shuttle program, and the one that came hair-raisingly close to leaping off the pad with one engine down. That would have meant an immediate scramble to perform a Return To Launch Site (RTLS) abort, flying backward through our Mach 5 exhaust plume to attempt a dicey landing back on Merritt Island. If anyone could pull it off, it would have been Bakes, Terry, Dan, and Steve. Assuredly, no one wanted to try it first.

The STS-68 crew: (L to R) Jones, Wisoff, Baker, Wilcutt, Smith, Bursch (NASA)

The STS-68 crew: (L to R) Jones, Wisoff, Baker, Wilcutt, Smith, Bursch (NASA)

September 30 was set as our new launch date. STS-64 in the meantime had flown its successful LITE Earth-science mission, with the additional milestone of Mark Lee and Carl Meade test-flying the SAFER EVA jetpack. Our crew had taken a week-long vacation, then got back into simulations and recurring training to polish our space radar abilities. I thought we used the extra time to good effect, and we proceeded to the Cape even better prepared than we were in August. We were certainly more rested than on our first attempt.

One piece of bad luck befell us: on the day we entered quarantine, five of us came down with cold systems. We suffered through four days in Houston of runny noses, aches and pains, and sore throats, but with constant flight surgeon attention we slowly improved. Our flight to the Cape was on the Shuttle Training Aircraft, the Gulfstream jet, to spare our sinuses enroute.

When we arrived at the Cape, Dan Bursch stepped off the jet in his Groucho Marx disguise, telling reporters that our chances of avoiding a launch abort were better if Endeavour didn’t know he was in the launch area. Our spirits were certainly on the upswing as our three days in Florida at crew quarters drew to a close.

Endeavour rockets off Pad 39A at 7:16:00:068 a.m on Sept. 30, 1994, to begin the STS-68 mission. (NASA STS068-s-037)

Endeavour rockets off Pad 39A at 7:16:00:068 a.m on Sept. 30, 1994, to begin the STS-68 mission. (NASA STS068-s-037)

Our launch was timed for dawn on September 30, with Endeavour taking us into a 57-degree inclination, circular orbit, about 120 nm up. At that altitude our orbit would drift west at such a rate that we could image each of our science targets three times each day, from slightly different radar incidence angles.

Endeavour and the SRL-2 crew leave Earth on a pillar of fire, Sept. 30, 1994.

Endeavour and the SRL-2 crew leave Earth on a pillar of fire, Sept. 30, 1994.

The liftoff was exhilarating–this time I knew what to expect! I occupied the same seat as on SRL-1, with Jeff Wisoff to my left. No abort this time–the boosters came alive with a punch to the gut and we soared aloft. Much of the cabin dialogue we exchanged during launch is in my book, Sky Walking: An Astronaut’s Memoir. I’d asked that the side hatch window cover again be removed, so I had a terrific view of the gantry turning from gray, to red, to white-hot as the boosters lit. The following eight and a half minutes were punctuated by pyros firing to sever the boosters at two minutes, and then the attention-getting 3 g’s during the final minute of the ascent. During those final seconds I truly experienced the power of the space shuttle’s three main engines, just hurling our 100-ton orbiter toward the injection altitude and velocity. A miracle of technology and physics.

We launched at dawn to give us the best chance to avoid early showers developing on the humid coast.

We launched at dawn to give us the best chance to avoid early showers developing on the humid coast.

After MECO, it was off to the races, with Steve Smith and I teaming up on video and still photography of the external tank as it drifted away, below us. Then Jeff and I threw ourselves into converting the middeck into its orbit configuration, and getting the rest of the crew out of their suits and on into their orbital jobs. We had only about 5 hours until my bedtime; the Blue Shift of Steve, Dan and I were due for our first sleep period while Jeff, Mike, and Terry activated SRL-2.

Our external tank, built by Lockheed Martin, drifts clear after MECO. The tank burned up over the Indian Ocean while our OMS engines propelled us into our final orbit. (NASA sts068-01-008)

Our external tank, built by Lockheed Martin, drifts clear after MECO. The tank burned up over the Indian Ocean while our OMS engines propelled us into our final orbit. (NASA sts068-01-008)

Space Radar Lab 2 had some new wrinkles, added since our April flight of SRL-1. The JPL folks had added a gold decal that matched one the Germans and Italians had placed on the X-band antenna. And the Langley Research Center also added a label to their Measurement of Air Pollution from Satellites (MAPS) instrument, positioned right in front of the radar antennae. It all made for a spectacular view out the back windows of the cabin:

Space Radar Lab 2, in Endeavour's cargo bay, over the Mongolian "Valley of the Lakes", 120 nm below. (NASA sts068-225-013)

Space Radar Lab 2, in Endeavour’s cargo bay, 120 nm above the Mongolian “Valley of the Lakes”, in southwestern Mongolia between the Khangai and Gobi Altai mountains. (NASA STS068-225-013)

We also had about 160 radar imagery recording cassettes aboard, up from the hundred or so we took aloft on SRL-1. The radar imaging schedule was even more ambitious than in April–and I’d thought that was intense!

I had thought I was over my cold, but upon arrival in orbit and a night’s sleep, I ran into its aftereffects. My sinuses were clogged, and without gravity, NOTHING was coming “down” out of my nose. My head felt like a balloon, and my face was reddened as if by a sunburn. I took to the medical locker to find the decongestants, and over a week or so, I slowly improved. The rest of my crewmates also dealt with the congestion lingering from our colds, and the natural stuffiness from the fluid shift headward, caused by our transition to free fall.

Jeff Wisoff, assisted by the pilots and coordinating with Mission Control (MCC), got SRL-2 up and running on his long first shift in orbit. When I woke from my quick 6 hours of sleep and talked to Jeff, I found he’d been “running” flat out with the activation for his entire shift, barely having time to grab a drink or a quick snack. I got cleaned up in a hurry and took over with Dan and Steve as quickly as we could, to spell the Red Shift from their labors. Having been up more than 18 hours, they were understandably tired. We tucked them into bed and ran with our Science Timeline, our program of observations.

The damaged right OMS pod tile, shattered by a tile that broke loose during ascent from the rim of the left overhead window. (NASA sts068-067-013)

The damaged right OMS pod tile, shattered by a tile that broke loose during ascent from the rim of the left overhead window. (NASA sts068-067-013)

We discovered the tile damage on the first day of the flight, after opening the payload bay doors and inspecting the cargo bay. MCC determined that the heat loads on the upper half of the OMS pod were mild enough that the tile damage would not be dangerous. That greatly eased our minds. It was several days later that we discovered the source of the damage, looking up through the window and noticing a missing piece of tile just outside the outer pane. The tile tore loose during ascent and flew back to strike the OMS pod.

Our STS-68 Blue Shift team: Dan (top), Steve (middle) and Tom (bottom). I slept on the ceiling of the lower bunk. (NASA STS068-033-027)

Our STS-68 Blue Shift team: Dan (top), Steve (middle) and Tom (bottom). I slept on the ceiling of the lower bunk. (NASA STS068-033-027)

The radar imagery returned resulted in wonderful images, like the one below, all across the disciplines of the Earth sciences. As we woke for our first work shift, Jeff, Terry, and Bakes called us upstairs to see a spectacular volcanic eruption in Kamchatka. Everyone grabbed a camera to capture images out the windows, while the radar lab obtained thousands of detailed images, revealing details obscured by the eruption plume.

The Kliuchevskoi volcano erupted on our launch day, Sep. 30, 1994. We tracked its eruption over the next week with photography and radar images like this one. The green streaks down the side of the 15,000-foot volcano (center) are mud and lava flows. (NASA JPL p44823)

The Kliuchevskoi volcano erupted on our launch day, Sep. 30, 1994. We tracked its eruption over the next week with photography and radar images like this one. The green streaks down the side of the 15,000-foot volcano (center) are mud and lava flows. (NASA JPL p44823)

The eruption was a true serendipitous gift from nature. If we had launched in August as planned, we would have missed this rare geological event. Now we had a ringside seat.

Kliuchevskoi's eruption as seen from STS-68, Endeavour. This shot was taken with a Hasselblad and 100mm lens. (NASA STS068_214_045)

Kliuchevskoi’s eruption as seen from STS-68, Endeavour. This shot was taken with a Hasselblad and 100mm lens. (NASA STS068_214_045)
Dan Bursch points out to me where we REALLY are, above planet Earth. Our atlas showed our orbit tracks and our 400+ science targets. JPL's science team prepared these custom-made maps with advice from our crew. (NASA sts068-083-023)

Dan Bursch points out to me where we REALLY are, above planet Earth. Our atlas showed our orbit tracks and our 400+ science targets. JPL’s science team prepared these custom-made maps with advice from our crew. (NASA STS068-083-023)

We were able to monitor Kliuchevskoi’s eruption for a solid week, using the SRL to track eruptive phases as weather fronts came and went across Kamchatka. During a TV downlink to MCC, I described how the radar beams interacted with lavas of varying roughness, using three samples from Hawaii to illustrate the viewing geometry. I had chunks of aa, pahoehoe, and andesite lava aboard–in free fall, I had to take care to not release rock dust or slivers of lava into the cabin from their ziploc bags.  The andesite sample was a more viscous, stiff lava, erupted from some of the more recent cinder cones on Mauna Kea.

Kliuchevskoi eruption viewed from Endeavour's aft flight deck windows. (NASA sts068-153-007)

Kliuchevskoi eruption viewed from Endeavour’s aft flight deck windows. (NASA sts068-153-007)

Our shift work was 12 hours on, an 8-hour sleep shift, plus 4 hours for “post-sleep” and “pre-sleep”. In those periods, we talked things over with the Red Shift guys, had breakfast, dinner, and exercise, and took care of necessary housekeeping. One of the challenges was giving Jeff, Terry, and Bakes a good night’s sleep by keeping quiet in the middeck. Even opening a locker could wake up that crew in their sleeping bags, inside their bunks, so we tried to get our lunch like church mice, then eat on the flight deck. Once I dumped a chunk of scrambled eggs that I’d insecurely anchored to a tortilla–it went flying all over the flight deck, and Dan had to help me gobble up the floating egg debris. Dan’s homemade chocolate chip cookies crumbled in their ziploc–getting them out without crumbs floating everywhere required true astronaut skill.

Panama Canal sts068-237-099

Above, from STS-68, SRL-2, the Panama Canal Zone, seen in Oct. 1994. Note the Pacific at left, with Panama City. Colon is on the Atlantic Coast (Caribbean) at right. The dark green jungle area protects the watershed that supplies the canal with fresh water via the Chagras River and Gatun Lake, at the canal’s midpoint. We were about 120 miles up over northern S. America when we took this shot. (NASA STS068-327-099)

Endeavour glides in for its landing on Oct. 11, 1994, at Edwards AFB, CA. (NASA EC94-42789-1)

Endeavour glides in for its landing on Oct. 11, 1994, at Edwards AFB, CA. (NASA EC94-42789-1)

Just after wheels stop on Endeavour, I was to unstrap from my middeck seat and stand up. The blood pressure measurement gear would record my response to standing erect in 1-g, once again. I knew when the equipment was working when my left arm’s pressure cuff inflated, but it never recovered after touchdown. The taped data from entry, however, were good, and so was the audio tape I made as we rode back through the atmosphere. I have to give credit to the designers for creating a rig that would work inside our pressure suits, and yet still be easy enough to don and operate. After return to Houston, I sent the investigators an apology for the verbal tirade I recorded, grousing about the troubles I had getting the batteries replaced and activating the system. My only excuse was being up for a very long day…around 18 hours by the time we landed, and we still had postflight medical tests to endure.

Drag chute DTO complete, Endeavour rolls out on Rwy. 22 at Edwards, with Baker and Wilcutt at the controls. (NASA EC94-42789-2)

Drag chute DTO complete, Endeavour rolls out on Rwy. 22 at Edwards, with Baker and Wilcutt at the controls. (NASA EC94-42789-2)

STS-68 is a highlight of my speech, “Sky Walking: An Astronaut’s Journey” — contact me at http://www.astronauttomjones.com/#!tom-jones-speaking-testimonial/cfgv

STS-59, Endeavour, Space Radar Lab 1 — April 9-20, 1994 April 9, 2013

Posted by skywalking1 in History, Space.
1 comment so far

 

Twenty years ago, our STS-59 crew completed the Terminal Countdown Demonstration Test in preparation for our April 9 launch. At pad 39A, with Endeavour, are Rich Clifford, Kevin Chilton, Sid Gutierrez, Linda Godwin, Tom Jones (the sole rookie), and Jay Apt. Boy, was I excited: just over two weeks til launch!

Twenty years ago, our STS-59 crew completed the Terminal Countdown Demonstration Test in preparation for our April 9 launch. At pad 39A, with Endeavour, are Rich Clifford, Kevin Chilton, Sid Gutierrez, Linda Godwin, Tom Jones (the sole rookie), and Jay Apt. Boy, was I excited: just over two weeks til launch! (NASA KSC-94PC-468)

Tom Jones with Endeavou'rs SRB and ET stack on Launch Pad 39A. The orbiter is enclosed by the gray protective structure. (NASA ksc-394c-1160.22)

Tom Jones with Endeavour’s SRB and ET stack on Launch Pad 39A. The orbiter is enclosed by the gray protective structure. (NASA ksc-394c-1160.22)

Our STS-59 crew during our countdown rehearsal on 3/23/94. Here we gather outside Endeavour's hatch in the Pad 39A White Room. Left to right are Rich Clifford, Jay Apt, Linda Godwin, Tom Jones, Kevin Chilton, and Sid Gutierrez. (NASA KSC-394C-1160.09)

Our STS-59 crew during our countdown rehearsal on 3/23/94. Here we gather outside Endeavour’s hatch in the Pad 39A White Room. Left to right are Rich Clifford, Jay Apt, Linda Godwin, Tom Jones, Kevin Chilton, and Sid Gutierrez. (NASA KSC-394C-1160.09)

On Endeavour's middeck, Linda Godwin (right) and I wait out the Terminal Countdown Demonstration Test (TCDT). I caught a brief nap during the 3-hour mock countdown. (NASA photo by Andy Thomas).

On Endeavour’s middeck, Linda Godwin (right) and I wait out the Terminal Countdown Demonstration Test (TCDT) on 3/24/94. I caught a brief nap during the 3-hour mock countdown. (NASA photo by Andy Thomas).

Endeavour rises toward its 57-deg inclination orbit at sunrise on April 9, 1994. (NASA)

Endeavour rises toward its 57-deg inclination orbit at sunrise on April 9, 1994. (NASA)

I’ve written about the Space Radar Lab 1 mission, STS-59, in my book, “Sky Walking: An Astronaut’s Memoir.” But here I’ll add some details not included in the book, and some of the many hundreds of photos our crew returned to preserve our memories of these superb 11 days in space. I’ll add thoughts and photos during the coming eleven days, with the idea that the post can become an archive for the STS-59 crew and team.

As soon as we entered quarantine in late March in Houston, shuttle managers postponed the April 7 launch a day for engine turbopump inspections. Then our first launch attempt on April 8 was postponed because of high winds at Kennedy Space Center, violating the runway crosswind limits for the orbiter in case of an emergency return to the Cape. Our crew sat strapped in on the pad for about five hours as we waited for the winds to abate, but they never did. The parachute pack and its emergency oxygen bottles become extremely annoying after five hours strapped in the seat. The scrub under clear blue skies was a disappointment, but we were coming back the next day.

This was my first space shuttle launch, and it lived up to my expectations in every day. Jolts, rumbles, screaming slipstream penetrating the cabin walls, 2.5 g’s during first stage–I could barely register all the physical and emotional sensations during the 8.5 minutes of ascent. I was gratified to have Linda Godwin seated to my left on the middeck — a veteran and friend I could turn to for reassurance during this vibration-filled ride to orbit. We were smiling the whole time, but behind the smile is a lot of prayer. After a full minute at 3 g’s, with the Mach meter at 25, I thanked God when we arrived in orbit–Main Engine Cut-Off–and weightlessness.

SRB sep STS-59 STS059-16ET-1577

The 16mm movie camera in Endeavour’s left ET umbilical well caught the left-side SRB separating at about 2 minutes into our ascent, ~ Mach 4. You can see the forward booster separation motors still firing. (NASA STS059-16ET-1577)

Sid, Jay, Rich, Kevin, Linda, and I were about to experience an incredibly rewarding Mission to Planet Earth.

Just out of my suit on the middeck of Endeavour, helping other crewmembers get unsuited and into "orbit" clothes. 4/9/94 (NASA)

Just out of my suit on the middeck of Endeavour, helping other crewmembers get unsuited and into “orbit” clothes. 4/9/94 (NASA)

The Space Radar Lab 1 payload in Endeavour's cargo bay. Three cutting-edge radar instruments, a CO pollution monitor, and a terrific view of the Aurora Australis. (NASA)

The Space Radar Lab 1 payload in Endeavour’s cargo bay. Three cutting-edge radar instruments, a CO pollution monitor, and a terrific view of the Aurora Australis. (NASA)

Our job on SRL-1, STS-59, was to act as the space component of the Space Radar Lab science team, deployed all over the world. We commanded the orbiter to point at our 400+ science targets, monitored the maneuver execution “flown” by Endeavour’s computers after our data entries, changed high rate recorder data tapes, and took voluminous science photography to provide “ground truth” about environmental conditions that might affect the radar return from the science targets. Our crew split into two shifts, Red and Blue, to run SRL around the clock. Linda Godwin led the activation on flight day 1. The Blue Shift woke up about 10 hours into the flight and took over for our first full science shift — Jay, Rich, and me. Linda, Sid, and Kevin went promptly to bed after a very long day. We soon settled into our 12-hour shift routines and explored the world for another ten days.

Rich Clifford inserts a data storage cassette into one of our 3 high rate recorders. Each tape cassette held 50 Gb of data. We carried more than 100 onboard, with a tape change about every 30 mins for 11 days. (NASA STS059-09-12)

Rich Clifford inserts a data storage cassette into one of our 3 high rate recorders. Each tape cassette held 50 Gb of data. We carried more than 100 onboard, with a tape change about every 30 mins for 11 days. (NASA STS059-09-12)

STS-59 crew: (L to R) Linda Godwin, Kevin Chilton, Tom Jones, Jay Apt, Sid Gutierrez, Rich Clifford. (NASA)

STS-59 crew: (L to R) Linda Godwin, Kevin Chilton, Tom Jones, Jay Apt, Sid Gutierrez, Rich Clifford. (NASA)

Our crew had 14 different cameras aboard to document our science targets. A big Linhof shot a 4×5-inch negative, using box magazines which we reloaded in a light-tight bag every night. We had four Hasselblads with 70mm film, each armed with a different lens for science photography (40mm, 100mm, 250mm, and an infrared filter atop a 250mm lens). We used Nikons for in-cabin photography using 35mm film. And we used payload bay video cameras to record the swath being seen by the radar with each data take. Here’s a shot of one of our “Decade Volcano” targets, the Philippines’ Mt. Pinatubo.

Mt. Pinatubo in the Philippines, which erupted in 1991, sends ash flows surging downslope under seasonal rains. Note the emerald green crater lake at the summit. (NASA STS059-L14-170)

Mt. Pinatubo in the Philippines, which erupted in 1991, sends ash flows surging downslope under seasonal rains. Note the emerald green crater lake at the summit. (NASA STS059-L14-170)

Kevin Chilton and Linda Godwin shoot science targets on the Red Shift aboard Endeavour. (NASA sts059-13-030)

Kevin Chilton and Linda Godwin shoot science targets on the Red Shift aboard Endeavour. (NASA sts059-13-030)

 

Frozen, volcanic Onekotan Island, Russia, in the Kuriles south of Kamchatka. April 14, 1994. (NASA STS059-219-065)

Frozen, volcanic Onekotan Island, Russia, in the Kuriles south of Kamchatka. April 14, 1994. (NASA STS059-219-065)

Tom Jones reloads Linhoff magazines, a daily challenge, on Endeavour's middeck. (NASA sts059-8-23)

Tom Jones reloads Linhoff magazines, a daily challenge, on Endeavour’s middeck. (NASA sts059-8-23)

Each work shift on the aft flight deck was run on the clock: a constant stream of orbiter maneuvers, recorder tape changes, and intense video and still photo sessions focused on the science targets below (or above, from our point of view on the flight deck). We took turns entering the maneuvers on the flight plan into Endeavour’s computers, changing and managing the 50 Gb tape cassettes, and spotting and documenting science targets with our cameras. After each target we typed entries into a laptop documenting the weather, dust, and precipitation conditions over the science site. Night passes were a bit calmer, because the photography requirements went away for the most part. We also called down fires and other environmental phenomena of interest to the Measurement of Air Pollution from Satellites team. In between, we grabbed snacks and established comm with HAM radio operators around the globe. One generous HAM arranged to patch me through on a phone call to Liz, back in Houston. We spoke clearly across the miles; me over Hawaii, Liz with the kids back in Houston, until Endeavour carried me over the horizon. Priceless.

Linda Godwin, Kevin Chilton (left) and Sid Gutierrez have breakfast and read flight plan changes on Endeavour's middeck. Work shifts were 12 hours, with 8 hours for sleep. The balance was spent on exercise, meals, and housekeeping. (NASA STS059-05-07)

Linda Godwin, Kevin Chilton (left) and Sid Gutierrez have breakfast and read flight plan changes on Endeavour’s middeck. Work shifts were 12 hours, with 8 hours for sleep. The balance was spent on exercise, meals, and housekeeping. (NASA STS059-05-07)

One of Jay Apt’s best photos of the Aurora Australis from STS-59. The radar antennae are to the left, the Canadarm I robot arm on the right. (NASA)

One of my favorite lunch items -- irradiated grilled chicken breast, mustard, 2 warm tortillas = chicken flying saucer sandwich (TM). (NASA STS059-19-020)

One of my favorite lunch items — irradiated grilled chicken breast, mustard, 2 warm tortillas = chicken flying saucer sandwich (TM). (NASA STS059-19-020)

From Endeavour’s commander, USAF Col. (ret.) Sid Gutierrez:
Great! My best memories are of the crew and the Southern Aurora. It was a great group of folks to work with both on the ground and in Space. I remember the comment Linda made during an interview that generated that strange response from the ground. I would like to forget about the air in the water and everything that went with that. Chili falling asleep on the middeck while sending Emails late at night. Jay maneuvering the vehicle under Chili’s watchful eye. Rich and I waiting for anyone to get sick so we could actually give a real shot. I remember your enthusiasm at seeing all of it the first time and your incessant comments into the tape recorder so you could piece all this together later. And I remember the incredible feeling as we blacked out the lights and floated through the Sothern Aurora – like passing thorough something that was alive. But most of all I remember being able to eat a juicy hamburger with tomato and lettuce after we landed and then heading home to wives, husband and all the kids. Great memories! (April 12, 2013)

Endeavour commander Sid Gutierrez on the flight deck during with one of our Hasselblads. Earth is the unbeatable backdrop. (NASA sts059-19-004)

Endeavour commander Sid Gutierrez on the flight deck during with one of our Hasselblads. Earth is the unbeatable backdrop. (NASA sts059-19-004)

The varied science targets across the globe required all of us to learn many aspects of Earth system science: geology, volcanology, forestry, ecology, hydrology, oceanography, agriculture, pollution monitoring, desertification, and radar remote sensing theory, among others. One of my favorite “others” was archaeology, where our team used the SIR-C and X-SAR radars to probe dry sands and soils and reveal traces of ancient cultures beneath. The experiment mapped extensive “radar river” drainages beneath the Saharan sands, traced the Silk Road along the margin of the Takla Makhan desert, and zeroed in on caravan routes to the lost trading city of Ubar on the Arabian peninsula. Aboard Endeavour we carried a 200,000-year-old hand axe, recovered by USGS colleague Jerry Schaber in the 1980s from the banks of one of the Egyptian radar rivers. There aboard the most sophisticated technological tool of the late 20th century, we contemplated a floating example of the “high tech” used by Homo Erectus back when the Sahara was a grassy savannah, teeming with game. What technology will we possess in another 200 millennia? Will the space shuttle even be remembered? I, for one, can never forget it!

South coast of the Alaska Peninsula, where the C-shaped island's arms enclose Sosbee Bay, in sunglint. (NASA STS059-214-001)

South coast of the Alaska Peninsula, with the C-shaped island enclosing Sosbee Bay, in sunglint. (NASA STS059-214-001)

Just out of frame on the left of this Alaska coastline is Veniaminoff volcano, one of the many active peaks on the peninsula. Here we see ocean currents and eddies made visible by the reflected sunlight, corroboration of ocean surface features observed by the radar lab. What a visual treat as well.

Our view from 120 miles up as we soar over Gibraltar, Spain, and Morocco. Snow caps the Atlas and Sierra Nevada ranges in Africa and Europe. (NASA sts059-238-074)

Our view from 120 miles up as we soar over Gibraltar, Spain, and Morocco. Snow caps the Atlas and Sierra Nevada ranges in Africa and Europe. (NASA sts059-238-074)

An early human hurled this axe at his prey along the banks of a stream in southern Egypt, perhaps 200,000 years ago. The USGS lent us this tool as we used our Radar Lab to map possible habitats of these ancient people, now hidden by the sands of the arid Sahara. (NASA sts-059-42-18)

An early human hurled this axe at his prey along the banks of a stream in southern Egypt, perhaps 200,000 years ago. The USGS lent us this tool as we used our Radar Lab to map possible habitats of these ancient people, now hidden by the sands of the arid Sahara. (NASA sts-059-42-18)

The Blue Shift -- Jay, Rich, and Tom -- enjoy a meal after a shift on the flight deck. We generally had about 2.5 hours after finishing work to eat, clean up, and take care of middeck chores before hitting the sleep stations. (NASA sts059-14-06)

The Blue Shift — Jay, Rich, and Tom — enjoys a meal after a shift on the flight deck. We generally had about 2.5 hours after finishing work to eat, clean up, and take care of middeck chores before hitting the sleep stations. (NASA sts059-14-06)

Our early spring view of the Alaskan coastal ranges, fronting the Inside Passage, was glorious. Our radar imaged glaciers around the world, like these near Mt. St. Elias, to help estimate their velocity downhill. STS059-228-94

Our early spring view of the Alaskan coastal ranges, fronting the Inside Passage, was glorious. Our radar imaged glaciers around the world, like these near Mt. St. Elias, to help estimate their velocity downhill. STS059-228-94

Jay Apt shoots one of our science targets through Endeavour's overhead windows. Mounted in the adjacent window was a large-format Linhof camera, taking a strip of overlapping photos to map each target. (NASA sts059-46-025)

Jay Apt shoots one of our science targets through Endeavour’s overhead windows. Mounted in the adjacent window was a large-format Linhof camera, taking a strip of overlapping photos to map each target. (NASA sts059-46-025)

An example of our crew science photography is shown below. This frame came from our 250mm lens on the large-format Linhof camera, mounted in the starboard overhead window of Endeavour’s flight deck. Sometimes we used the other Linhof body and shot handheld frames, just sighting over the lens barrel at the ground below. The Linhof magazines contained about 100 shots, and we had to reload them from film canisters while “off shift” on the middeck.

Vertical view of Strait of Gibraltar. Spain to lower left. Morocco to upper right. Note current flow in strait and along coast. The advantages of Gibraltar's harbor are plain to see. (sts059-l19-837)

Vertical view of Strait of Gibraltar. Spain to lower left. Morocco to upper right. Note current flow in strait and along coast. The advantages of Gibraltar’s harbor are plain to see. (STS059-L19-837)

These bunks were on the starboard side of Endeavour’s middeck, stacked 4-high. Since each shift, Red and Blue, was off duty for 12 hours, we hot-bunked in the top three and used the bottom bunk for storage. Each station contained a reading light, fresh air vent, sliding privacy door, and a fleece sleeping bag. As this was my first flight, I didn’t realize that there were two bags in each bunk, clipped one atop the other, so I think I just hot-bunked in the same bag as Chili, probably. I slept in long pants, a T-shirt, and sweater, as it was a bit cool in the bunk. I even stuffed a sock in the vent to cut down on the cold breeze at “night.” I drifted off to sleep most nights with a Walkman playing a cassette for a few minutes; more than once I woke up to find the player drifting above my face, still delivering some soft music. In the morning, it would be tough to find the door in the pitch-dark compartment: turning over in the bag in free-fall meant that I had no way to determine which way was down, up, or the side that held the door. Groping around to find the reading light would usually set me straight. I had these bunks on three of my missions–they were quite comfortable, quiet, and private for sleep.

The SRL-1 Red Shift of Sid Gutierrez, Linda Godwin, and Kevin Chilton (bottom) prepares for their cozy night in Endeavour's sleep stations. (NASA STS059-22-004)

The SRL-1 Red Shift of Sid Gutierrez, Linda Godwin, and Kevin Chilton (bottom) prepares for their cozy night in Endeavour’s sleep stations. (NASA STS059-22-004)

May 2013: I just returned from a trip to the Mediterranean, and viewed Mt. Vesuvius from the Bay of Naples and the lovely town of Sorrento, Italy. Here is the incredible view of this active volcano from our SRL-1 imager. Vesuvius last erupted in 1944, nearly 70 years ago. It is long overdue for another outburst. Three million people live in the Naples area. Evacuation will be a huge challenge. May the mountain sleep for a long time.

Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR- C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA's  P-45742 July 13, 1995

Mt. Vesuvius, one of the best known volcanoes in the world primarily for the eruption that buried the Roman city of Pompeii, is shown in the center of this radar image. The central cone of Vesuvius is the dark purple feature in the center of the volcano. This cone is surrounded on the northern and eastern sides by the old crater rim, called Mt. Somma. Recent lava flows are the pale yellow areas on the southern and western sides of the cone. Vesuvius is part of a large volcanic zone which includes the Phalagrean Fields, the cluster of craters seen along the left side of the image. The Bay of Naples, on the left side of the image, is separated from the Gulf of Salerno, in the lower left, by the Sorrento Peninsula. Dense urban settlement can be seen around the volcano. The city of Naples is above and to the left of Vesuvius; the seaport of the city can be seen in the top of the bay. Pompeii is located just below the volcano on this image. The rapid eruption in 79 A.D. buried the victims and buildings of Pompeii under several meters of debris and killed more than 2,000 people. Due to the violent eruptive style and proximity to populated areas, Vesuvius has been named by the international scientific community as one of fifteen Decade Volcanoes which are being intensively studied during the 1990s. The image is centered at 40.83 degrees North latitude, 14.53 degrees East longitude. It shows an area 100 kilometers by 55 kilometers (62 miles by 34 miles.) This image was acquired on April 15, 1994 by the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR- C/X-SAR) aboard the Space Shuttle Endeavour. SIR-C/X-SAR, a joint mission of the German, Italian and the United States space agencies, is part of NASA’s Mission to Planet Earth.
P-45742 July 13, 1995

SRL-1 added to our knowledge of the Earth’s impact history, by examining scars left by collisions with asteroids and comets. Here is the Aorounga impact cratter in northern Chad. Although the main crater (shown here) is visible to astronauts from orbit, our radar scans revealed (beneath the sands) two additional candidate craters. Aorounga may be a crater chain, caused by the impact of a string of comet fragments, or an asteroid accompanied by a couple of moonlets. I spent hours searching the landscape below for the circular forms  of impact craters; it’s a pattern the human eye easily locks onto from orbit.

The impact of an asteroid or comet several hundred million years ago left scars in the landscape that are still visible in this spaceborne radar image of an area in the Sahara Desert of northern Chad. The concentric ring structure is the Aorounga impact crater, with a diameter of about 17 kilometers (10.5 miles). The original crater was buried by sediments, which were then partially eroded to reveal the current ring-like appearance. The dark streaks are deposits of windblown sand that migrate along valleys cut by thousands of years of wind erosion. The dark band in the upper right of the image is a portion of a proposed second crater. Scientists are using radar images to investigate the possibility that Aorounga is one of a string of impact craters formed by multiple impacts. Radar imaging is a valuable tool for the study of desert regions because the radar waves can penetrate thin layers of dry sand to reveal details of geologic structure that are invisible to other sensors. The image was acquired by the Spaceborne Imaging Radar-C/X-band Synthetic Aperture Radar (SIR-C/X-SAR) on April 18 and 19, 1994, onboard the space shuttle Endeavour. The area shown is 22 kilometers by 28 kilometers (14 miles by 17 miles) and is centered at 19.1 degrees north latitude, 19.3 degrees east longitude. North is toward the upper right. The colors are assigned to different radar frequencies and polarizations as follows: red is L-band, horizontally transmitted and received; green is C-band, horizontally transmitted and received; and blue is C-band, horizontally transmitted, vertically received. SIR-C/X-SAR, a joint mission of the German, Italian and United States space agencies, is part of NASA’s Mission to Planet Earth program. P-46712 March 20, 1996

Flight Day 9 called for a thorough pre-landing check of our reentry systems. The pilots, with Rich, our flight engineer and MS-2, stepped through hydraulic systems, flight computers, auxiliary power units (APSs), and thrusters to verify proper operation. We observed systematic thruster firings from the flight deck, and watched our elevons on the wing trailing edges rise and fall, driven by the now-awakened APU’s and hydraulic systems. Endeavour was coming fully alive; all was in readiness for entry the next day.

On Flight Day 9, Sid, Chili, and Rich ran through our flight control system checkout on Endeavour's flight deck.  NASA STS059-12-035.

On Flight Day 9, Sid, Chili, and Rich ran through our flight control system checkout on Endeavour’s flight deck.
NASA STS059-12-035.

Landing for our STS-59 crew came too soon, after 11 days in orbit. We had planned a 9-day mission, but our flight control team anticipated that power conservation aboard Endeavour would extend our mission to ten full days. Good power management by our payload team and Mission Control (and our keeping the lights and electricity consumption to a minimum in the cabin) secured that extra day. Our reentry was planned for April 19, but Kennedy Space Center weather prevented a return to the Florida landing site. We waved off the landing and returned to limited Earth observations for a final day; my Blue Shift went to bed immediately for 6-8 hours, then took over from our Red Shift for final cabin stowage and payload deactivation.

On April 20, weather at Kennedy was still NO-GO, so we targeted Edwards AFB in California for landing. Our crew was disappointed to not be heading for our families in Florida, but satisfied to be heading back to Earth with our successful science mission completed. Reentry over the nighttime Pacific was a spectacular experience–the plasma pulsing around our cockpit windows provided a mesmerizing light show that I’ll never see equaled. I was perched upstairs in the MS-1 seat next to Rich Clifford, MS-2. We aided the pilots, Sid and Kevin, as they guided Endeavour into southern California and our line-up for landing at Edwards.

Entry plasma seen through the overhead windows of the shuttle flight deck. NASA S08-102-2835

Entry plasma seen through the overhead windows of the shuttle flight deck. NASA S08-102-2835

Ripping over the California coast at more than Mach 5, it seemed to me that we’d never slow down enough to make the Edwards runway–I agreed with Sid’s assessment that “we’re headed for a landing in Arkansas!” But our flight computers were right on the money. Sid took control and put us gently on the concrete of Runway 22, an exhilarating touchdown for all of us aboard. Read about the entire return to Earth in “Sky Walking: An Astronaut’s Memoir.” Great landing, Sid and Kevin! Thanks a million for bringing us all home.

The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occurred at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes. NASA image. NASA STS059(S)07

The main landing gear of the Space Shuttle Endeavour touches down at Edwards Air Force Base to complete the 11 day STS-59/SRL-1 mission. Landing occurred at 9:54 a.m., April 20, 1994. Mission duration was 11 days, 5 hours, 49 minutes. NASA image. NASA STS059(S)07

From the MS-1 seat, I shot video of our reentry aboard Endeavour. Jay took this shot after landing from the middeck ladder on the port side. STS059-47-11

From the MS-1 seat, I shot video of our reentry aboard Endeavour. Jay took this shot after landing from the middeck ladder on the port side. STS059-47-11

 

Post-landing, I felt laden with extra weight, as if my launch and entry suit were made of lead. That video camera feels like fifty pounds. Getting out of the seat took every bit of strength I could muster; I had to force my muscles to slide over and lower my “two-ton” body down the ladder.

Jay Apt on the middeck took this shot of the ground crew at Edwards opening Endeavour's hatch after our April 20 landing. NASA STS059-47-22

Jay Apt on the middeck took this shot of the ground crew at Edwards opening Endeavour’s hatch after our April 20 landing. NASA STS059-47-22

The ground crew is the first to sample the interior atmosphere of our sealed spacecraft, after six people have lived in that volume for 11 days. Our noses were used to any aromas, but they no doubt smelled the combined odors of our wet trash bin, the shuttle waste control system compartment, our dirty laundry, and six bodies who hadn’t showered in more than 10 days. They may have wanted to just close that hatch up again!

Shuttle Atlantis’ New Home at KSC March 8, 2013

Posted by skywalking1 in History, Space.
1 comment so far

Speaking to the “space-going “public at the Kennedy Space Center Visitor Complex at Cape Canaveral, FL, I find the energy level among visitors is already pretty high. But it’s about to get a tremendous boost when the Space Shuttle Atlantis exhibit opens on June 29, 2013. I visited the construction site this week and was amazed at the way Atlantis will be displayed to the public.

Visiting Atlantis on March 5, 2013. (Tom Jones)

Visiting Atlantis on March 5, 2013. (Tom Jones)

Atlantis was the last space shuttle orbiter I would fly, on STS-98, so even shrink-wrapped as she is, I am still moved when visiting the ship that took me to space, kept me alive to work at the International Space Station, and returned me safely to my family.  Delaware North, the company that runs NASA’s visitor complex here, is spending about $85 million to give visitors an up close and personal look at the orbiter. She’ll almost be close enough to touch, and Atlantis is positioned in a steep left bank, giving guests a breath-taking sense of her impressive wingspan.

Entering the building, guests will get a capsule history of the space shuttle’s history from its designers and astronauts, then a high-def introduction to Atlantis’ storied career, beginning with her first flight in 1985. Leaving the theater, visitors will walk “through the screen” to view the orbiter as she looked when in orbit. Close at hand will be a mockup of the Hubble Space Telescope. A wide ramp will enable visitors to spiral down and around the orbiter to see Atlantis, her cargo bay, windows and cabin, wings, engines, and heat shield tiles from every angle. Beneath the orbiter will be a roomy plaza, where guests will enter the Shuttle Launch Experience simulation. With blast-off under their belts, visitors will exit to a simulation bay where a future space traveler can try one’s own hand at flying and landing the space shuttle.

Atlantis' immense heat-shield-tiled belly, towering above visitors. (Tom Jones)

Atlantis’ immense heat-shield-tiled belly, towering above visitors. (Tom Jones)

You’ll have to drag me out of Atlantis’ presence–it’s going to be that good!

Remember, before leaving Atlantis’ home, pick up a copy of my story detailing my Atlantis mission to the ISS on STS-98, and my three other missions: Sky Walking: An Astronaut’s Memoir.

http://www.AstronautTomJones.com

Astronaut Selection in 2013 – Duane Ross Interview February 12, 2013

Posted by skywalking1 in Space.
2 comments

Astronaut as Explorer: Jack Schmitt on Apollo 17, December 1972.
(NASA)

Duane Ross ran the selection process when I was lucky enough to be hired in 1990. He’s still at it. He and Teresa Gomez were our guides through the process and welcomed my colleagues once we were selected and planning our moves to Houston. Here is his take on the latest round of astronaut selections: Popular Science Q&A: How NASA Selected The 2013 Class Of Astronauts.

Good luck to the new candidates (when announced) and to future applicants and colleagues!

Tom Jones

www.AstronautTomJones.com

To Be An Astronaut – 2013 Edition February 6, 2013

Posted by skywalking1 in Space.
Tags: , ,
add a comment
Tom Jones in front of shuttle Enterprise, National Air & Space Museum

Tom Jones in front of shuttle Enterprise, National Air & Space Museum

Twenty-three years ago, in January 1990, I received an invitation to join NASA’s Astronaut Corps. It was the best job I ever had (read about my selection, training, and exhilarating flights in “Sky Walking: An Astronaut’s Memoir.” I’m frequently asked today for tips or advice on how new applicants — some very bright and talented people — can improve their chances of threading NASA’s selection process and achieving their dream of spaceflight. Here are a few thoughts:

  • Consult NASA’s astronaut selection and training site to learn the basic requirements and procedures. But — you’ve already done that.
  • Participate in some outdoor, physical, active hobby or pursuit that complements your day job and shows aptitude for skills needed in spaceflight. If you’re having fun, you’ve chosen a good activity! Keep getting better at it.
  • Increase your chances of passing the NASA physical by following a regular exercise and fitness program. Get to your ideal weight – it makes a good impression and avoids health problems later.
  • Become conversant about one specific aspect of the NASA human spaceflight program — present or planned — and be able to discuss it comfortably with the selection panel. You should know what you’re getting into.
  • Be meticulous about your application. Typos and grammatical errors were an instant turn-off for me when I was at NASA. Showcase your professional skills in writing and communication.
  • Tell NASA in your application what you will bring to their team. How will you help advance specific NASA goals?

Once your application is in, keep improving your resume. If you are offered an interview, you’ll be able to bring new and interesting material to the Selection Panel interview. If you are offered that trip to Houston for an interview:

  • Ask questions on your visits to the Astronaut Office. Poke your head in the office doors and ask crewmembers what they are working on, and what they like and dislike about the job.
  • In the interview, be yourself. Keep your answers brief and specific, but don’t be afraid to speak plainly and sincerely. The panelists want to get a sense of who you are – and if they would like to work with you.
  • Let your natural enthusiasm for space shine. Be professional yet enthusiastic. I was eager to get the chance to interview, and let the panelists know it.
  • Take the long view. If not selected, you can apply again. Resolve to go back to your present job and to improve your qualifications for the next round.
  • Network with your fellow applicants, online, and in Houston. Perhaps someone chosen can help you with advice for the next opportunity. And you might make a life-long friend.
  • Have fun!

I believe NASA will keep hiring small numbers of astronauts to keep their work force adaptable and energized. See the report of the NRC panel on the future of astronaut training that I helped prepare in 2010. And remember that the commercial spaceflight sector, as it grows, will also need talented crewmembers. There are broader opportunities today than ever before in space, although the numbers of people flying to orbit annually will remain at less than a dozen, at least for another five to ten years.

Good luck! Say hello to my friends on the selection panel. And send me a note from space!

Tom Jones

www.AstronautTomJones.com

 

Saying Good-bye to Endeavour September 14, 2012

Posted by skywalking1 in History, Space.
add a comment

On my week-long speaking tour at Kennedy Space Center Visitor Complex, I drove out with communicators Nick Thomas and Mark Smith to visit my first shuttle, orbiter OV-105, Endeavour. Today she was being readied for her final voyage to the West Coast and future home at the California Science Center. Hoisted atop the NASA 747 carrier aircraft, Endeavour was the center of attention as the skilled shuttle techs fastened the orbiter to her three attach points on the shuttle carrier. On Monday she’ll take flight enroute to Houston, El Paso, Edwards Air Force Base/Dryden Flight Research Facility, and finally, LAX.

Endeavour was a superb ship to live and work aboard. Our two Space Radar Lab missions, in 1994, aboard OV-105 were tremendously successful Missions to Planet Earth. (More on those research flights in the coming week as we approach the 18th anniversary of the liftoff of STS-68, SRL-2.) Read about my adventures on Endeavour in “Sky Walking: An Astronaut’s Memoir.”

Astronaut Tom Jones with OV-105 Endeavour, 14 Sep 12.

I will miss Endeavour’s regular presence in space. May we Americans soon send her successors into space to fulfill her legacy.

www.AstronautTomJones.com

Kennedy Space Center and Neil Armstrong September 12, 2012

Posted by skywalking1 in History, Space.
add a comment

Sept.  12, 2012

I’m speaking here this week at Astronaut Encounter at the Kennedy Space Center Visitor Complex, meeting people from all over the planet, I’m energized by the enthusiasm and thirst for new discoveries in space shown by our visitors. The spirit of space exploration, pioneered by Mercury, Gemini, Apollo, Skylab, the Space Shuttle, and now the International Space Station, is captured here at the Visitor Complex. Here we come face to face with the history and hardware of the last fifty years of our work on the space frontier. I’m like a kid in a candy store.

The Mercury-Atlas rocket and capsule, a replica of the booster that sent John Glenn around the world on America’s first orbital flight, was just erected here at the Visitor Complex. The Mercury-Atlas joins the Gemini-Titan II, an actual space booster, towering over the smaller vehicles in the Rocket Garden. The Gemini Titan II was assembled and tested in Middle River, MD, about two miles from my boyhood home. As a 10-year-old boy, I visited Gemini Titans for Geminis 7 and 8, and secretly promised myself I would one day ride a rocket. The biggest booster in the Rocket Garden is the Saturn IB that stood by as the rescue launcher for our Skylab space station crews.

Image

Mercury-Atlas 6 Replica

KSC Visitor Center Complex

Image

Gemini IX launch (NASA)

Space shuttle Endeavour—my first ship–leaves here Monday for its final voyage to the West Coast, and Atlantis will move to the Visitor Complex this fall, to its permanent home welcoming returning astronauts and all those who love the story of spaceflight.

Image

Visiting Endeavour, Sept. 11, 2012

Just a few miles north is the Apollo-Saturn V moon rocket, on spectacular display overlooking Banana Creek and Launch Complex 39 pads that sent Americans to the Moon (and me aloft on my four space shuttle flights).  I’ve been lucky enough to meet many of the Apollo astronauts, and had the pleasure of working with several at NASA’s astronaut office, on the NASA Advisory Council, and in the educational efforts of the Astronaut Scholarship Foundation.

One of those exemplary figures was Neil Armstrong, whom we lost last month when he passed away at age 82. Neil, the first human to walk on the Moon, will be memorialized tomorrow at the National Cathedral. He was a skilled aviator, test pilot, and engineer, a committed explorer, an able spokesman on the importance of exploration to the nation, and a role model for an entire generation of astronauts.

Image

Full credit and thanks to ©Steve Breen: San Diego Union Tribune

I most appreciated his modesty and dignity as he dealt with the celebrity that history thrust upon him. Neil made his fame serve a higher purpose. We honor his service and courage, and we will miss him.

Here at Kennedy Space Center, NASA and its partners are creating our future in space in the form of the machines that will carry our footsteps alongside Neil and his colleagues, then beyond to the nearby asteroids and Mars. Even more important, though, are leaders who will commit us to challenging goals on the space frontier, follow through with the resources needed to succeed, and inspire our young explorers to fulfill that dream.

Tom Jones is a veteran astronaut, planetary scientist, and author of Sky Walking: An Astronaut’s Memoir:  www.AstronautTomJones.com.

Search for the City Killers July 3, 2012

Posted by skywalking1 in Space.
2 comments

Artist concept of near-Earth asteroid entering the atmosphere, seconds from an impact. (ESA)

July 3, 2012

The B612 Foundation announced last week that it will raise funds to launch and operate a space-based telescope to search for dangerous near-Earth asteroids (NEAs). The hazard from these bodies is real. The Tunguska impact in Siberia, in 1908, was caused by Earth’s collision with a small asteroid, about 40 meters across, which exploded with the force of 3 to 5 Megatons of TNT, enough to level a major city. There are about a million near-Earth asteroids big enough to penetrate Earth’s atmosphere and cause city-wide or regional destruction; Tunguska-sized impacts occur every few centuries. Each year, about thirty explosions as powerful as the Hiroshima A-bomb occur in the high atmosphere from small asteroid impacts.

Today, we know of less than 10,000 of these objects. The number of detections is growing rapidly, thanks to NASA’s search program. The agency spends $20M per year on asteroid detection and research. One good result is that NASA-funded Earth-based telescopes have discovered about 90% of all NEAs > 1 km (about 5/8 mile) in diameter. These objects could cause global damage if they struck Earth. Fortunately, none is on a collision course in the next century (see the most worrisome impact threats here). In fact, today we know of know of no asteroids with a high probability of impact.

There’s the rub: We have detected and have orbits for less than 1% of the asteroids capable of causing extensive damage on Earth. We need a much more thorough search. At the current pace of NASA funding, we will not find these numerous small asteroids for decades. To fill this detection gap, the private B612 private foundation (full disclosure: several friends are involved in running B612) wants to launch Sentinel, a sun-circling space telescope to find these dangerous asteroids.

Two astronaut colleagues are principals in the B612 effort: Rusty Schweickart (Apollo 9) and Ed Lu (shuttle, Station). Sentinel will be privately funded, and once launched, will deliver NEA detection results to NASA, and through the Minor Planet Center, to other space agencies and scientists.

Sentinel has a main mirror about half a meter wide, and stands about eight meters tall. The relatively simple spacecraft is based on the Kepler planet-hunting telescope and the detectors are based on those of the WISE infrared telescope. The mission will cost about $500M over a decade, about the same as a typical Mars orbiter or Discovery-class interplanetary mission.

Our ground-based asteroid observatories search only at night, and can’t look too close to the Sun, missing those NEAs which spend much of their time in Earth’s daytime sky. To overcome those limitations, Sentinel will orbit the Sun in an orbit similar to that of Venus, about 0.7 the distance of Sun to the Earth. Racing on the inside track interior to Earth’s orbit, Sentinel will discover NEAs more efficiently than ground-based telescopes: it will sweep through the asteroid swarm more rapidly than Earth, and looking outward past Earth, it will see small asteroids inside Earth’s orbit, those usually invisible to terrestrial telescopes.

Sentinel will detect heat, or radiation in the infrared portion of the spectrum, where asteroids shine brightest. It will ignore background stars and look for rapidly moving objects—NEAs. The telescope will relay the orbits of asteroids it detects to the Minor Planet Center catalog. NASA will then run an analysis of these thousands of new orbits to look for possible future impacts.

If funds are available, Sentinel can launch in about five years. Once in its Venus-like orbit, the mission will take about 5.5 years to detect and map most of the small asteroids bigger than 50 m across.

NASA itself has studied NEA search missions like Sentinel, but in its current budget straits the agency says it cannot afford it now. The White House has chosen not to budget for such a telescope and its “asteroid insurance” policy, waiting for Congress to appropriate the funds. For its part, Congress in 2005 directed NASA to find 90% of the NEAs that are larger than 140 m, representing most of the remaining impact risk to Earth. But it has failed to deliver explicit funding for the telescope mission.

If we find a NEA on a collision path, we have the technology to divert it –– and prevent a cosmic disaster. We only have to change the velocity by ~ 1mm/sec to make an asteroid miss its appointment with Earth, years later. Three methods are promising:

  • the gravity tractor (slight force on an asteroid exerted by gravity of hovering spacecraft)
  • kinetic impact (smacking an NEA with a hypervelocity slug to change its velocity)
  • nuclear explosive (vaporizes thin top layer of NEA surface, pushing asteroid in opposite direction of blast. Rarely needed, but can divert large NEAs, comets, or those discovered very late)

[Read more about how we’ll decide on preventing an impact through the work of the Association of Space Explorers.]

The enabler for all three solutions is early warning. As JPL comet and asteroid scientist Don Yeomans says, the top three priorities for diverting an NEA are:

  1.  Find them early!
  2. Find them early!
  3. Find them early!

That’s where Sentinel comes in. The Sentinel project or one like it is the fastest way for us to reveal the cosmic shooting gallery within which Earth orbits. B612 has decided not to wait for NASA, and to start the discovery process now.

Astronaut colleague Rusty Schweickart says that right now, we are driving around the solar system without insurance. The B612 team plans to fly Sentinel, and work with NASA along the way to get this vital NEA tracking information to society. An important side benefit is that Sentinel will also tell NASA which asteroids are in the best, most accessible orbits for future astronaut expeditions to the nearby NEAs.

Tom Jones is a planetary (asteroid) scientist, veteran NASA astronaut, speaker, and the author of “Planetology: Unlocking the Secrets of the Solar System.” (Chapter 2 is all about asteroid impacts.)

www.AstronautTomJones.com

Tom Jones comments on B612 Sentinel Mission — July 2, 2012

Follow

Get every new post delivered to your Inbox.

Join 26 other followers